Elephant User Manual

Elephant version 1.0 (alpha 1)

By Ian Eslick with Robert Read, Glenn Tarcea and Ben Lee

Elephant System

Original Version, Copyright (©) 2004 Ben Lee and Andrew Blumberg.
Version 0.5, Copyright (©) 2006 Robert L. Read.

Versions 0.6-1.0, Copyright (© 2006-2009 Ian Eslick and Robert L. Read.
Portions copyright respective contributors (see ‘CREDITS’).

Elephant Manual

Original Version, Copyright (©) 2004 Ben Lee.

Versions 0.5-0.6, Copyright (©) 2006 Robert L. Read.

Version 1.0, Copyright © 2006-2007 Ian Eslick, Glenn Tarcea and Robert L.
Read

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License. See the Copyright and License
chapter for details about copyright, license and warranty for this manual and
the Elephant system.

Table of Contents

1

Introduction.........c..o'iiieieeeennenn.

1.1 HiStOry oo
1.2 Elephant Goals........ i
1.3 More Information

Tutorial cv it i et ittt i e

2.1 OVEIVIEW . ot
2.2 Getting Started ...
2.3 The Store RoOt
2.4 Serialization
2.5 Persistent Classest
2.6 Rules about Persistent Classes.............
2.7 Persistent collections i
271 Using PSetso
272 Using BTrees...... i,
2.8 Indexing Persistent Classes. ...,
2.9 Using Transactions
2.9.1 Why do we need Transactions?
2.9.2 Using with-transaction
2.9.3 Nesting Transactions..............
2.9.4 Idempotent Side Effects
2.9.5 Transactions and Performance
2.9.6 Transactions and Applications
2.10 Advanced TOpiCS . ..o et

Installation..........covviiineennnn.

3.1 Requirementsoiioi e
3.1.1 Supported Lisp, Platform and Data store combinations ...
3.1.2 Library dependencies. i

3.2 Configuring Elephant

3.3 Loading Elephant
3.3.1 Loading Elephant via ASDF
3.3.2 Two-Phase Load Process...........
3.33 Packages..... ...
3.3.4 Opening a Store. ...

3.4 Berkeley DB ... o

3.5 Setting up Berkeley DB......... ...

3.6 Upgrading Berkeley DB Databases...........................
3.6.1 Upgrading t0 0.9
3.6.2 Upgrade from Elephant 0.5.............................

3.7 CL-SQL .

3.8 CL-SQL Example

ii

Elephant User Manual

3.9 Elephant on Windows i 29
.10 Test SUILeS ..ot 29
3.11 Documentation 30
User Guide...........cciiiiiiiiiiinnan.. 33
4.1 The Store Controller i 33
4.2 Serialization details......... 34
4.2.1 Restrictions of Store-by-Value 34
4.2.2 Atomic Types ... 35
4.2.3 Aggregate Types.uuui 36
4.3 Persistent Classes and Objects 37
4.3.1 Persistent Class Definition.............................. 37
4.3.2 Instance Creation..........., 39
4.3.3 Persistent Instance Lifecycle...................... 40
4.3.4 Using Transient Slots 40
4.3.5 Using Persistent Slots.............. 41
4.3.6 Class Redefinition, 42
4.3.7 Support for change-classc.oviriiininnnne .. 43
4.4 Class Indices.t 43
4.4.1 Synchronizing Classes and Data Stores.................. 44
4.5 Persistent Sets 44
4.6 Persistent BTrees........ i 44
4.7 BTree CUrSOTS . ..ottt ettt e e e et e e 45
4.8 BTree Indexing 46
4.9 Index Cursors.coiiin e 48
4.10 Multi-threaded Applications 48
4.10.1 Shared Resources............o oo, 49
4.10.2 Data Store Thread Safety and Transactions............. 49
4.10.3 Minimize Dependency on Thread-Local Specials......... 49
4.11 Transaction Details. o i 49
4.11.1 with-transaction internals........................... o0
4.11.2 execute-transaction internals 50
4.11.3 Building your own transactional framework............. 50
4.11.4 Analyzing Dynamic Transaction Behavior ol
4.12 Multi-repository Operationo, .. o1
4.13 Multiple Processes and Distributed Applications............. o1
4.14 Repository Migration and Upgrade o1
4.15 Performance Tuning.......... ..., 52
4.16 Garbage Collection......... 53
4.17 Berkeley DB Data Store 53
4.17.1 Architecture Overviewcoiiiiiieeeeinn. o4
4.17.2 Opening a Storeooui it 54
4.17.3 Starting a Transaction i 54
4.17.4 Special Commands. i 55
4.17.5 Performance Tuning 5]
4.18 CLSQL Data Store. ..., o6
4.18.1 Basic CLSQL Implementation 56

4.19 Postmodern Data Store....... 56

4.20 Native Lisp Data Store i o6
User API Reference....................... 57
5.1 Store Controllers........ ... 57
5.2 Persistent Objects....... ... i 58
5.3 Persistent Object Indexing o8
5.3.1 Indexed Object AcCessorsvvveiiiiiiininn .. o8
5.4 Persistent Sets 59
5.5 BIrees . oo 60
5.6 Btree CUrsSOrsottt 61
5.7 Index CurSOrs.ottt 63
9.8 Transactions............ooiiiii i 64
5.9 Migration and Upgrading 65
Design Patterns 67
6.1 Persistent System Objects 67
6.2 File System Replacement 68
6.3 Checkpointing Conventional Program State 70
6.3.1 ASSUMPEIONS . . oottt e 70
6.3.2 Snapshot Set i 71
6.3.3 Snapshot Set Implementation........................... 73
6.3.4 Isolating multiple snapshot sets......................... 76
6.4 Elephant as Database............. i 78
6.5 Multithreaded Web Applications 79
6.6 Real-World Application Examples 79
6.6.1 Konsenti...........ooiiiiiiiiiii 79
6.6.2 Conceptiminert 79
Elephant Architecture 83
7.1 Initializing a store controller 83
7.2 Persistent Object Creation........... 84
7.3 Persistent Slot Protocol...... 84
7.4 Persistent Collection Protocols 85
7.5 Implementing Transactions............ 85
7.5.1 Implementing Execute Transaction...................... 86
7.5.2 Interleaving Multiple Store Transactions................. 86
Data Store API Reference................. 89
8.1 Registration 89
8.2 Store Controllers....... 89
8.3 SIot ACCESS - oo 92
8.4 ColleCtions. . . oo vt 93
8.0 CUISOTS .« ottt e e e e 94
8.6 Transactions.............coiiniiiini 95
8.7 Multithreading Considerations 96

8.8 Handling Serialization 96

iii

iv Elephant User Manual

9 Copyright and License 99
9.1 Elephant Licensing i 99
9.2 Elephant Manual Copyright and Licensing 100
9.3 3rd Party Libraries......... 100
9.4 Data Store Licensing Considerations........................ 100

Appendix A Concept Index................ 101

Appendix B Object Index................. 103

Appendix C Function / Macro Index....... 105

Appendix D Variable Index................ 107

Colophon.......... ..., 109

Chapter 1: Introduction 1

1 Introduction

Elephant is a persistent object protocol and database for Common Lisp. The persistent
protocol component of elephant overrides class creation and standard slot accesses using
the Meta-Object Protocol (MOP) to render slot values persistent. Database functionality
includes the ability to persistently index and retrieve ordered sets of class instances and
ordinary lisp values. Elephant has an extensive test suite and the core functionality is
becoming quite mature.

The Elephant code base is available under the LLGPL license. Data stores each come
with their own, separate license and you will have to evaluate the implications of using them
yourself.

1.1 History

Elephant was originally envisioned as a lightweight interface layer on top of the Berkeley
DB library, a widely-distributed embedded database that many unix systems have installed
by default. Berkeley DB is ACID compliant, transactional, process and thread safe, and
fast relative to relational databases.

Elephant has been extended to provide support for multiple backends, specifically a
relational database backend based on CL-SQL which has been tested with Postgres and
SQLite 3, and probably support other relational systems easily. It supports, with some care,
multi-repository operation and enables convenient migration of data between repositories.

The support for relational backends and migration to the LLGPL was to allow for broader
use of Elephant in both not-for-profit and commercial settings. Several additional backends
are planned for future releases including a native Lisp implementation released under the
LLGPL.

Elephant’s current development focus is to enhance the feature set including a native
lisp backend, a simple query language, and flexible persistence models that selectively break
one or more of the ACID constraints to improve performance.

1.2 Elephant Goals

e Transparency: most Lisp values are easy to persist without significant effort or special
syntax. You can interact with the DB entirely from Lisp. There is no requirement to
use domain-specific languages, such as SQL, to access persistent resources. Elephant
loads via ASDF and requires no external server (except for some SQL backends like
Postgres).

e Simplicity: a small library with few surprises for the programmer. Lisp and Berkeley
DB together are an excellent substrate; Elephant tries to leverage their features as
much as possible. Support for additional backends are load-time options and more or
less transparent to the user.

e Safety: ACID, transactions. Concurrent with good multi-user (BDB) and multi-
threaded semantics (BDB/SQL), isolation, locking and deadlock detection. (Deadlock
detection does require an external process to be launched for Berkeley DB)

e Performance: leverage Berkeley DB performance and/or Relational database reliability.
In addition to fast concurrent / transactional modes, elephant will (eventually) offer

2 Elephant User Manual

an accelerated single-user as well as pure in-memory mode that should be comparable
to prevalence style solutions, but employ a common programmer interface.

e Historical continuity: Flephant does not try to innovate significantly over prior Lisp
persistent object stores such as AllegroStore (also based on Berkeley DB), the new
AllegroCache, the Symbolics system Statice and PLOB. Anyone familiar with those
systems will recognize the Elephant interface.

e License Flexibility: FElephant is released under the LLGPL. Because it supports multi-
ple implementation of the backend, one can choose a backend with licensing and other
features appropriate to your needs.

1.3 More Information

Join the Elephant mailing lists to ask your questions and receive updates. You can also
review archives for past discussions and questions. Pointers can be found on the Elephant
website at

http://www.common-lisp.net/project/elephant.

Installation instructions can be found in the Chapter 3 [Installation], page 23 section.
Bugs can be reported via the Elephant Trac system at

http://trac.common-lisp.net/elephant/.

This also serves as a good starting point for finding out what new features or capabilities

you can contribute to Elephant. The Trac system also contains a wiki with design discussions
and a FAQ.

http://www.common-lisp.net/project/elephant
http://trac.common-lisp.net/elephant/

Chapter 2: Tutorial 3

2 Tutorial

2.1 Overview

Elephant is a Persistence Metaprotocol and Database for Common Lisp. It provides the
ability for users to define and interact with persistent objects and to transparently store
ordinary lisp values. Persistent objects are CLOS instances that overload the ordinary slot
access semantics so that every write to a slot is passed through and written to disk. Non-
persistent lisp objects and values can be written to slots and will be automatically persisted.
In addition, Elephant provides a persistent index which maintains an ordered collection of
lisp values or persistent object references.

The use of persistent objects makes coding concise, convenient, and powerful, and makes
persistence almost invisible to the programmer. However, Elephant also allows the same
basic data dictionary of key/value retrieval that BerkeleyDB provides.

When someone says "database," most people think of SQL Relational Data Base Man-
agement Systems (e.g. Oracle, Postgresql, MySql). Those systems store data in statically
typed tables with unique shared values to connect rows in separate tables. Objects can be
mapped into these tables in an object-relational mapping that assigns objects to rows and
slot values to columns in a row’s table. If a slot references another type of object, a unique
ID can be used to reference that object’s table. CL-SQL, for example, provides facilities
for this kind of object-relational mapping and there are many systems for other languages
that do the same (i.e. Hibernate for Java).

While Elephant can use either RDBMSs or Berkeley DB as a data store, the model it
supports is that of objects stored in persistent indices. Unlike systems such as Hibernate
for Java, the user does not need to construct or worry about a mapping from the object
space into the database. Elephant relies on LISP rather than SQL for its data manipulation
language. Elephant is designed to be a simple and convenient tool for the programmer.

Elephant consists of a small universe of basic concepts:

e Store controller: the interface between lisp and a data store. Most operations require
or accept a store controller, or a default store controller stored in *store-controller*
to function.

e Persistent Sets: A simple persistent collection is provided which allows the creation of
persistent sets.

e BTrees: Elephant provides a persistent key-value abstraction based on the BTree data
structure. Values can be written to or read from a BTree and are stored in a sorted
order.

e Stored values: most lisp values, including standard objects, arrays, etc can be used as
either key or value in a persistent BTree.

e Persistent objects: An object where most slot values are stored in the data store and
are written to or retrieved from disk on slot accesses. Storing a persistent object stores
only a reference, allowing for object identity.

e Object indexing: The ability to lookup and sort objects by their slot values rather than
by explicit inclusion in a collection.

4 Elephant User Manual

e Transactions: a dynamic context for executing operations on objects or collections such
that the side effects exhibit the ACID (atomicity, consistency, isolation and durability)
properties of database.

There are a set of more advanced concepts you will learn about later, but these basic
concepts will serve to acquaint you with Elephant.

If you do not already have Elephant installed and building correctly, read the Chapter 3
[Installation|, page 23 section of this manual and then move on to Section 2.2 [Getting
Started], page 4.

2.2 Getting Started

The first step in using elephant is to open a store controller. A store controller is an object
that coordinates lisp program access to the chosen data store.

To obtain a store controller, you call open-store with a store specification. A store
specification is a list containing a backend specifier (:BDB or : CLSQL) and a backend-specific
reference.

For :BDB, the second element is a string or pathname that references a local directory
for the database files. This directory must be created prior to calling open-store.

(open-store ’(:BDB ‘‘/users/me/db/my-db/’’))

For :CLSQL the second argument is another list consisting of a specific SQL database
and the name of a database file or connection record to the SQL server. Examples are:

(open-store ’(:CLSQL (:SQLITE "/users/me/db/sqlite.db")))
(open-store ’(:CLSQL (:POSTGRESQL "localhost.localdomain"
Ilmydbll nmyusern nn))))

We use Berkeley DB as our example backend. To open a BDB store-controller we can
do the following;:

(asdf:operate ’asdf:load-op :elephant)

(use-package :elephant)

(setf #*test-db-specx*

> (:BDB '"/home/me/db/testdb/"))
(open-store *test-db-specx*)
We do not need to store the reference to the store just now as it is automatically as-

signed to the variable, *store-controller*. For a deeper discussion of store controller
management see the Chapter 4 [User Guide], page 33.

When you're done with your session, release the store-controller’s resources by calling
close-store.

Also there is a convenience macro with-open-store that will open and close the store,
but opening the store is an expensive operation so it is generally better to leave the store
open until your application no longer needs it.

2.3 The Store Root

What values live between lisp sessions is called liveness. Liveness in a store is determined
by whether the value can be reached from the root of the store. The root is a special BTree
in which other BTrees and lisp values can be stored. This BTree has a special interface

Chapter 2: Tutorial)

through the store controller. (There is a second root BTree called the class root which will
be discussed later.)

You can put something into the root object by

(add-to-root "my key" "my value")
=> "my value"
and get things out via
(get-from-root "my key")
=> "my value"
=T
The second value indicates whether the key was found. This is important if your key-
value pair can have nil as a value.
You can perform other basic operations as well.
(root-existsp "my key")
=T
(remove-from-root '"my key")
=> T
(get-from-root "my key")
=> NIL
=> NIL

To access all the objects in the root, the simplest way is to simply call map-root with a
function to apply to each key-value pair.

(map-root
(lambda (k wv)
(format t "key: “A value:"A~}%" k v)))

You can also access the root object directly.

(controller-root *store-controllerx)
=> #<DB-BDB::BDB-BTREE #x10e86042>

It is an instance of a class "btree"; see Section 4.6 [Persistent BTrees], page 44.

2.4 Serialization

What can you put into the store besides strings? Almost all lisp values and objects can be
stored: numbers, symbols, strings, nil, characters, pathnames, conses, hash-tables, arrays,
CLOS objects and structs. Nested and circular things are allowed. Nested and circular
things are allowed. You can store basically anything except compiled functions, closures,
class objects, packages and streams. Functions can be stored as uncompiled lambda ex-
pressions. (Compiled functions and other kinds of objects may eventually get supported
t00.)

Elephant needs to use a representation of data that is independant of a specific lisp or
data store. Therefore all lisp values that are stored must be serialized into a canonical
format. Because Berkeley DB supports variable length binary buffers, Elephant uses a
binary serialization system. This process has some important consequences that it is very
important to understand:

6 Elephant User Manual

1. Lisp identity can’t be preserved. Since this is a store which persists across invocations
of Lisp, this probably doesn’t even make sense. However if you get an object from the
index, store it to a lisp variable, then get it again - they will not be eq:

(setq foo (cons nil nil))

=> (NIL)

(add-to-root "my key" foo)

=> (NIL)

(add-to-root "my other key" foo)
=> (NIL)

(eq (get-from-root "my key")
(get-from-root "my other key"))
=> NIL

2. Nested aggregates are stored in one buffer. If you store an set of objects in a hash
table you try to store a hash table, all of those objects will get stored in one large
binary buffer with the hash keys. This is true for all other aggregates that can store
type T (cons, array, standard object, etc).

3. Mutated substructure does not persist.

(setf (car foo) T)

=T

(get-from-root "my key")

=> (NIL)
This will affect all aggregate types: objects, conses, hash-tables, et cetera. (You can
of course manually re-store the cons.) In this sense elephant does not automatically
provide persistent collections. If you want to persist every access, you have to use
BTrees (see Section 4.6 [Persistent BTrees|, page 44).

4. Serialization and deserialization can be costly. While serialization is pretty fast, but it is
still expensive to store large objects wholesale. Also, since object identity is impossible
to maintain, deserialization must re-cons or re-allocate the entire object every time
increasing the number of GCs the system does. This eager allocation is contrary to
how most people want to use a database: one of the reasons to use a database is if your
objects can’t fit into main memory all at once.

5. Merge-conflicts in heavily multi-process/threaded situations. This is the common read-
modify-write problem in all databases. We will talk more about this in the Section 2.9
[Using Transactions|, page 15 section.

This may seem terribly restrictive, but don’t despair, we’ll solve most of these problems
in the next section.....

2.5 Persistent Classes

The Common Lisp Object System and the Metaobject Protocol, gives us the tools to solve
these problems for objects:

(defclass my-persistent-class ()
((slotl :accessor slotl)
(slot2 :accessor slot2))
(:metaclass persistent-metaclass))

Chapter 2: Tutorial 7

(setq foo (make-instance ’my-persistent-class))
=> #<MY-PERSISTENT-CLASS {492F4F85}>

(add-to-root "foo" foo)

=> NIL

(add-to-root "bar" foo)

=> NIL

(eq (get-from-root "foo")

(get-from-root "bar"))
=T
What’s going on here? Persistent classes, that is, classes which use the persistent-

metaclass metaclass, are given unique IDs (accessable through ele::0id). They are seri-
alized simply by their OID and class. Slot values are stored separately (and invisible to the
user) keyed by OID and slot. Loading (deserializing) a persistent class

(get-from-root "foo")
=> #<MY-PERSISTENT-CLASS {492F4F85}>

instantiates the object or finds it in a memory cache if it already exists. (The cache is
a weak hash-table, so gets flushed on GCs if no other references to the persistent object
are kept in memory). The slot values are NOT loaded until you ask for them. In fact, the
persisted slots don’t have space allocated for them in the instances, because we’re reading
from the database.

(setf (slotl foo) "one")

=> '"one"

(setf (slot2 foo) "two")
=> "two"

(slotl foo)

=> "one"

(slot2 foo)

=> "two"

Changes made to them propogate automatically:

(setf (slotl foo) "three")

=> "three"
(slotl (get-from-root "bar"))
=> "three"

You can also create persistent classes using the convenience macro defpclass.

(defpclass my-persistent-class ()
((slotl :accessor slotl)
(slot2 :accessor slot2)))

Although it is hard to see here, serialization / deserialization of persistent classes is
fast, much faster than ordinary CLOS objects. Finally, they do not suffer from merge-
conflicts when accessed within a transaction (see below). In short: persistent classes solve
the problems associated with storing ordinary CLOS objects. We'll see later that BTrees
solve the problems associated with storing hash-tables.

8 Elephant User Manual

2.6 Rules about Persistent Classes

Using the persistent-metaclass metaclass declares all slots to be persistent by default.
To make a non-persistent slot use the :transient t flag. Class slots :allocation :class
are never persisted, for either persistent or ordinary classes. (Someday, if we choose to store
class objects, this policy may change).

Persistent classes may inherit from other classes. Slots inherited from persistent classes
remain persistent. Transient slots and slots inherited from ordinary classes remain transient.
Ordinary classes cannot inherit from persistent classes — otherwise persistent slots could not
be stored!

(defclass stdclassl ()
((slotl :initarg :slotl :accessor slotl)))

(defclass stdclass2 (stdclassl)
((slot2 :initarg :slot2 :accessor slot2)))

(defpclass pclassl (stdclass?2)
((slotl :initarg :slotl :accessor slotl)
(slot3 :initarg :slot3 :accessor slot3)))

(make-instance ’pclassl :slotl 1 :slot2 2 :slot3 3)
=> #<PCLASS1 {x10deb88a}>

(add-to-root ’pinst *)
=> #<PCLASS1 {x10deb88al}>

(slotl pinst)
=>1

(slot2 pinst)
=> 2

(slot3 pinst)
=> 3
Now we can simulate a new lisp session by flushing the instance cache, reloading our
object then see what slots remain. Here persistent slotl should shadow the standard slotl
and thus be persistent. Slot3 is persistent by default and slot2, since it is inherited from a
standard class should be transient.

(elephant: :flush-instance-cache *store-controller*)
=> #<EQL hash-table with weak values, O entries {x11198a02}>

(setf pinst (get-from-root ’pinst))
=> #<PCLASS1 {x1119b652}>

(slotl pinst)
=1

Chapter 2: Tutorial 9

(slot-boundp pinst slot2 pinst)
=> nil

(slot3 pinst)
=> 3

Using persistent objects has implications for the performance of your system. Note that
the database is read every time you access a slot. This is a feature, not a bug, especially
in concurrent situations: you want the most recent commits by other threads, right? This
can be used as a weak form of IPC. But also note that in particular, if your slot value is
not an immediate value or persistent object, reading will cons or freshly allocate storage for
the value.

Gets are not an expensive operation; you can perform thousands to tens of thousands
of primitive reads per second. However, if you're concerned, cache large values in memory
and avoid writing them back to disk as long as you can.

2.7 Persistent collections

The remaining problem outlined in the section on Section 2.4 [Serialization|, page 5 is that
operations which mutate collection types do not have persistent side effects. We have solved
this problem for objects, but not for collections such as as arrays, hashes or lists. Elephant
provides two solutions to this problem: the pset and btree classes. Each provides persistent
addition, deletion and mutation of elements, but the pset is a simple data structure that
may be more efficient in memory and time than the more general btree.

2.7.1 Using PSets

The persistent set maintains a persistent, unordered collection of objects. They inherit
all the important properties of persistent objects: identity and fast serialization. They
also resolve the mutated substructure and nested aggregates problem for collections. Every
mutating write to a pset is an independent and persistent operation and you can serialize
or deserialize a pset without serializing any of it’s key-value pairs.

The pset is also a very convenient data structure for enabling a persistent slot contain
a collection that can be updated without deserializing and/or reserializing a list, array or
hash table on every access.

Let’s explore this data structure through a (very) simple social networking example.

(defpclass person ()
((name :accessor person-name :initarg :name))
((friends :accessor person-friends :initarg :friends)))

Our goal here is to store a list of friends that each person has, this simple graph structure
enables analyses such as who are the friends of my friends, or do I know someone who knows
X or what person has the minimum degree of separation from everyone else?

Without psets, we would have to do something like this:

(defmethod add-friend ((me person) (them person))
(let ((friends (person-friends me)))
(pushnew them friends)

10 Elephant User Manual

(setf (person-friends me) friends)))

(defmethod remove-friend ((me person) (them person))
(let ((remaining-friends (delete them (person-friends me))))
(setf (person-friends me) remaining-friends)))

(defmethod map-friends (fn (me person))
(mapc fn (person-friends me)))

Ouch! This results in a large amount of consing. We have to deserialize and generate a
freshly consed list every time we call person-friends and then reserialize and discard it
on every call to (setf person-friends).

Instead, we can simply use a pset as the value of friends and implement the add and
remove friend operations as follows:

(defpclass person ()
((name :accessor person-name :initarg :name))
((friends :accessor person-friends :initarg :friends
:initform (make-pset))))

(defmethod add-friend ((me person) (them person))
(insert-item them (person-friends me)))

(defmethod remove-friend ((me person) (them person))
(remove-item them (person-friends me)))

(defmethod map-friends (fn (me person))
(map-pset fn (person-friends me)))

If you want a list to be returned when the user calls person-friends themselves, you can
simply rejigger things like this:

(defpclass person ()
((name :accessor person-name :initarg :name))
((friends :accessor person-friends-set :initarg :friends
:initform (make-pset))))

(defmethod person-friends ((me person))
(pset-list (person-friends-set me)))

If you just change the person-friends calls in our prior functions, the new set of functions
removes (setf person-friends), which doesn’t make sense for a collection slot, allows
users to get a list of the friends for easy list manipulations and avoids all the consing that
plagued our earlier version.

You can use a pset in any way you like just like a persistent object. The only difference

is the api used to manipulate it. Instead of slot accessors, we use insert, remove, map and
find.

There is one drawback to persistent sets and that is that they are not garbage collected.
Over time, orphaned sets will eat up alot of disk space. Therefore you need to explicitly

Chapter 2: Tutorial 11

free the space or resort to more frequent uses of the migrate procedure to compact your
database. The pset supports the drop-pset

However, given that persistent objects have the same explicit storage property, using
psets to create collection slots is a nice match.

2.7.2 Using BTrees

BTrees are collections of key-value pairs ordered by key with a log(N) random access time
and a rich iteration mechanism. Like persistent sets, they solve all the collection problems
of the prior sections. Every key-value pair is stored independently in Elephant just like
persistent object slots.

The primary interface to btree objects is through get-value. You use setf get-value
to store key-value pairs. This interface is very similar to gethash.

The following example creates a btree called *friends-birthdays* and adds it to the
root so we can retrieve it during a later sessions. We then will add two key-value pairs
consisting of the name of a friend and a universal time encoding their birthday.

(defvar *friends-birthdays* (make-btree))
=> *FRIENDS-BIRTHDAYS*

(add-to-root ’friends-birthdays *friends-birthdays*)
=> #<BTREE {4951CF6D}>

(setf (get-value "Ben" xfriends-birthdays*)
(encode-universal-time 0 0 0 14 4 1973))
=> 2312600400

(setf (get-value "Andrew" *friends-birthdays*)
(encode-universal-time 0 0 0 22 12 1976))
=> 2429071200

(get-value "Andrew" *friends-birthdaysx*)
=> 2429071200
=>T

(decode—universal-time *)
=> 0

0

0

22

12

1976

2

NIL

6

In addition to the hash-table like interface, btree stores pairs sorted by the lisp value of
the key, lowest to highest. This is works well for numbers, strings, symbols and persistent

12 Elephant User Manual

objects, but due to serialization semantics may be strange for other values like arrays, lists,
standard-objects, etc.

Because elements are sorted by value, we can iterate over all the elements of the BTree
in order. Notice that we entered the data in reverse alphabetic order, but will read it out
in alphabetical order.

(map-btree (lambda (k v)
(format t "name: “A utime: “A~Y" k
(subseq (multiple-value-list
(decode-universal-time v)) 3 6)))
friends-birthdays)
"Andrew"
llBenII
=> NIL

But what if we want to read out our friends from oldest to youngest? One way is to
employ another btree that maps birthdays to names, but this requires multiple get-value
calls for each update, increasing the burden on the programmer. Elephant provides several
better ways to do this.

The next section Section 2.8 [Indexing Persistent Classes|, page 12 shows you how to
order and retrieve persistent classes by one or more slot values.

2.8 Indexing Persistent Classes

Class indexing simplifies the storing and retrieval of persistent objects. An indexed class
stores every instance of the class that is created, ensuring that every object is automatically
persisted between sessions.

(defpclass friend ()
((name :accessor name :initarg :name)
(birthday :initarg :birthday))
(:index t))

=> #<PERSISTENT-METACLASS FRIEND>

(defmethod print-object ((f friend) stream)
(format stream "#<"A>" (name f)))

(defun encode-date (dmy)
(apply #’encode-universal-time
(append ’(0 0 0) dmy)))

(defmethod (setf birthday) (dmy (f friend))
(setf (slot-value f ’birthday)
(encode-date dmy))
dmy)

(defun decode-date (utime)
(subseq (multiple-value-list (decode-universal-time utime)) 3 6))

Chapter 2: Tutorial 13

(defmethod birthday ((f friend))
(decode-date (slot-value f ’birthday)))

Notice the class argument “:index t”. This tells Elephant to store a reference to this
class. Under the covers, there are a set of btrees that keep track of classes, but we won’t
need to worry about that as all the functionality has been nicely packaged for you.

We also created our own birthday accessor for convenience so it accepts and returns
birthdays in a list counsisting of month, day and year such as (27 3 1972). The index key
will be the encoded universal time, however.

Now we can easily manipulate all the instances of a class.

(defun print-friend (friend)
(format t " name: "A birthdate: “A~Y%"
(name friend) (birthday friend)))

(make-instance ’friend :name "Carlos"

:birthday (encode-date ’(1 1 1972)))
(make-instance ’friend :name "Adriana"

:birthday (encode-date ’(24 4 1980)))
(make-instance ’friend :name "Zaid"

:birthday (encode-date ’(14 8 1976)))

(get-instances-by-class ’friend)
=> (#<Carlos> #<Adriana> #<Zaid>)

(mapcar #’print-friend *)

name: Carlos birthdate: (1 1 1972)
name: Adriana birthdate: (24 4 1980)
name: Zaid birthdate: (14 8 1976)

=> (#<Carlos> #<Adriana> #<Zaid>)

But what if we have thousands of friends? Aside from never getting work done, our
get-instances-by-class will be doing a great deal of consing, eating up lots of memory and
wasting our time. Fortunately there is a more efficient way of dealing with all the instances
of a class.

(map-class #’print-friend ’friend)
name: Carlos birthdate: (1 1 1972)
name: Adriana birthdate: (24 4 1980)
name: Zaid birthdate: (14 8 1976)
=> NIL
map-class has the advantage that it does not keep references to objects after they are
processed. The garbage collector can come along, clear references from the weak instance
cache so that your working set is finite. The list version above conses all objects into
memory before you can do anything with them. The deserialization costs are very low in
both cases.
Notice that the order in which the records are printed are not sorted according to either
name or birthdate. Elephant makes no guarantee about the ordering of class elements, so
you cannot depend on the insertion ordering shown here.

14 Elephant User Manual

So what if we want ordered elements? How do we access our friends according to name
and birthdate? This is where slot indices come into play.

(defpclass friend ()
((name :accessor name :initarg :name :index t)
(birthday :initarg :birthday :index t)))

Notice the :index argument to the slots and that we dropped the class :index argument.
Specifying that a slot is indexed automatically registers the class as indexed. While slot
indices increase the cost of writes and disk storage, each entry is only slightly larger than
the size of the slot value. Numbers, small strings and symbols are good candidate types for
indexed slots, but any value may be used, even different types. Once a slot is indexed, we
can use the index to retrieve objects by slot values.

get-instances-by-value will retrieve all instances that are equal to the value argu-
ment, with the equality relation defined by the database backend.

(get-instances-by-value ’friend ’name "Carlos")
=> (#<Carlos>)

But more interestingly, we can retrieve objects for a range of values.
(get-instances-by-range ’friend ’name "Adam" "Devin")
=> (#<Adriana> #<Carlos>)

(get-instances-by-range ’friend ’birthday
(encode-date ’(1 1 1974))
(encode-date ’(31 12 1984)))
=> (#<Zaid> #<Adriana>)

(mapc #’print-friend *)

name: Zaid birthdate: (14 8 1976)
name: Adriana birthdate: (24 4 1980)
=> (#<Zaid> #<Adriana>)

To retrieve all instances of a class in the order of the index instead of the arbitrary order
returned by get-instances-by-class you can use nil in the place of the start and end
values to indicate the first or last element. (Note: to retrieve instances null values, use
get-instances-by-value with nil as the argument).

(get-instances-by-range ’friend ’name nil "Sandra")
=> (#<Adriana> #<Carlos>)

(get-instances-by-range ’friend ’name nil nil)
=> (#i<Adriana> #<Carlos> #<Zaid>)
There are also functions for mapping over instances of a slot index. To map over du-
plicate values, use the :value keyword argument. To map by range, use the :start and :end
arguments.

(map-class-index #’print-friend ’friend ’name :value "Carlos")
name: Carlos birthdate: (1 1 1972)
=> NIL

(map-class-index #’print-friend ’friend ’name

Chapter 2: Tutorial 15

:start "Adam" :end "Devin")
name: Adriana birthdate: (24 4 1980)
name: Carlos birthdate: (1 1 1972)
=> NIL

(map-class-index #’print-friend ’friend ’birthday
:start (encode-date ’(1 1 1974))
:end (encode-date (31 12 1984)))

name: Zaid birthdate: (14 8 1976)

name: Adriana birthdate: (24 4 1980)

=> NIL

(map-class-index #’print-friend ’friend ’birthday
:start nil
:end (encode-date ’(10 10 1978)))
name: Carlos birthdate: (1 1 1972)
name: Zaid birthdate: (14 8 1976)
=> NIL

(map-class-index #’print-friend ’friend ’birthday
:start (encode-date ’(10 10 1975))
:end nil)

name: Zaid birthdate: (14 8 1976)

name: Adriana birthdate: (24 4 1980)

=> NIL

The Chapter 4 [User Guide|, page 33 contains a descriptions of the advanced features
of Section 4.4 [Class Indices], page 43 such as “derived indicies” that allow you to order
classes according to an arbitrary function, a dynamic API for adding and removing slots
and how to set a policy for resolving conflicts between the code image and a database where
the indexing specification differs.

This same facility is also available for your own use. For more information see Section 4.8
[BTree Indexing], page 46.

2.9 Using Transactions

One of the most important features of a database is that operations enforce the ACID
properties: Atomic, Consistent, Isolated, and Durable. In plainspeak, this means that a set
of changes is made all at once, that the database is never partially updated, that each set
of changes happens sequentially and that a change, once made, is not lost.

Elephant provides this protection for all primitive operations. For example, when you
write a value to an indexed slot, the update to the persistent slot record as well as the
slot index is protected by a transaction that performs all the updates atomically and thus
enforcing consistency.

2.9.1 Why do we need Transactions?

Most real applications will need to use explicit transactions rather than relying on the
primitives alone because you will want multiple read-modify-update operations act as an

16 Elephant User Manual

atomic unit. A good example for this is a banking system. If a thread is going to modify a
balance, we don’t want another thread modifying it in the middle of the operation or one
of the modifications may be lost.

(defvar *accounts* (make-btree))

(defun add-account (account)
(setf (get-value account *accountx)

(defun balance (account)
(get-value account *accounts*))

(defun (setf balance) (amount account)
(setf (get-value account *accounts*) amount))

(defun deposit (account amount)
"This shows a read and a write function call to
get then set the balance"
(let ((balance (balance account)))
(setf (balance account)
(+ balance amount))))

(defun withdraw (account amount)
"A nice concise lisp version for withdraw"
(decf (balance account) amount))

(add-account ’me)
=> 0

(deposit ’me 100)
=> 100

(balance ’me)

=> 100

(withdraw ’me 25)
=> 75

(balance ’me)

=> 75

This simple bank example has a significant vulnerability. If two threads read the same
balance and one writes a new balance followed by the other, the second balance was written
without access to the balance provided by the first and so the first transaction is lost.

The way to avoid this is to group a set of operations together, such as the read and write
in deposit and withdraw. We accomplish this by establishing a dynamic context called a
transaction.

During a transaction, all changes are cached until the transaction is committed. The
changes made by a committed transaction happens all at once. Transactions can also be
aborted due to errors that happen while they are active or because of contention. Contention
is when another thread writes to a variable that the current transaction is reading. As in
the bank example above, if one transaction writes the balance after the current one has

Chapter 2: Tutorial 17

read it, then the current one should start over so it has an accurate balance to work with.
A transaction aborted due to contention is usually restarted until it has failed too many
times.

The simplest and best way to use transactions in Elephant is to simply wrap all the
operations in the with-transaction macro. Any statements in the body of the macro are
executed within the same transaction. Thus we would modify our example above as follows:

(defun deposit (account amount)
(with-transaction ()
(let ((balance (balance account)))
(setf (balance account)
(+ balance amount)))))

(defun withdraw (account amount)
(with-transaction ()
(decf (balance account) amount)))

And presto, we have an ACID compliant, thread-safe, persistent banking system!

2.9.2 Using with-transaction

What is with-transaction really doing for us? It first starts a new transaction, attempts to
execute the body, and commits the transaction if successful. If anytime during the dynamic
extent of this process there is a conflict with another thread’s transaction, an error, or other
non-local transfer of control, the transaction is aborted. If it was aborted due to contention
or deadlock, it attempts to retry the transaction a fixed number of times by re-executing
the whole body.

And this brings us to two important constraints on transaction bodies: no dynamic
nesting and idempotent side-effects.

2.9.3 Nesting Transactions

In general, you want to avoid nested uses of with-transaction statements over multiple
functions. Nested transactions are valid for some data stores (namely Berkeley DB), but
typically only a single transaction can be active at a time. The purpose of a nested transac-
tion in data stores that support them is to break a long transaction into subsets. This way
if there is contention on a given subset of variables, only the inner transaction is restarted
while the larger transaction can continue. When the inner transaction commits its results,
those results become part of the outer transaction but are not written to disk until the
outer transaction commits.

If you have transaction protected primitive operations (such as deposit and withdraw)
and you want to perform a group of such transactions, for example a transfer between
accounts, you can use the macro ensure-transaction instead of with-transaction.

(defun deposit (account amount)
"Wrap the balance read and the setf with the new balance"
(ensure-transaction ()
(let ((balance (balance account)))
(setf (balance account)
(+ balance amount)))))

18 Elephant User Manual

(defun deposit (account amount)
"A more concise version with decf doing both read and write"
(ensure-transaction ()
(decf (balance account) amount)))

(defun withdraw (account amount)
(ensure-transaction ()
(decf (balance account) amount)))

(defun transfer (src dst amount)
"There are four primitive read/write operations
grouped together in this transaction"
(with-transaction ()
(withdraw src amount)
(deposit dst amount)))

ensure-transaction is exactly like with-transaction except it will reuse an existing
transaction, if there is one, or create a new one. There is no harm, in fact, in using this
macro all the time.

Notice the use of decf and incf above. The primary reason to use Lisp is that it is good
at hiding complexity using shorthand constructs just like this. This also means it is also
going to be good at hiding data dependencies that should be captured in a transaction!

2.9.4 Idempotent Side Effects

Within the body of a with-transaction, any non database operations need to be idempotent.
That is the side effects of the body must be the same no matter how many times the body
is executed. This is done automatically for side effects on the database, but not for side
effects like pushing a value on a lisp list, or creating a new standard object.

(defparameter *transient-objects* nil)

(defun load-transients (n)
"This is the wrong way!"
(with-transaction ()
(loop for i from O upto n do
(push (get-from-root i) *transient-objects*))))

In this contrived example we are pulling a set of standard objects from the database
using an integer key and pushing them onto a list for later use. However, if there is a
conflict where some other process writes a key-value pair to a matching key, the whole
transaction will abort and the loop will be run again. In a heavily contended system you
might see results like the following.

(defun test-list ()
(setf *transient-objects* nil)
(load-transients)
(length *transient-objects*))

(test-1list 3)

Chapter 2: Tutorial 19

=>3

(test-1list 3)
=> 5

(test-1list 3)
=> 4

So the solution is to make sure that the operation on the lisp parameters is atomic if the
transaction completes.

(defun load-transients (n)
"This is a better way"
(setq *transient-objects*
(with-transaction ()
(loop for i from O upto n collect
(get-from-root i)))))

(Of course we would need to use nreverse if we cared about the order of instances in
*transient-objectsx)

The best rule-of-thumb is to ensure that transaction bodies are purely functional as
above, except for side effects to persistent objects and btrees.

If you really do need to execute side-effects into lisp memory, such as writes to transient
slots, make sure they are idempotent and that other processes cannot read the written
values until the transaction completes.

2.9.5 Transactions and Performance

By now transactions almost look like more work than they are worth! Fortunately, there
are also performance benefits to explicit use of transactions. Transactions gather together
all the writes that are supposed to made to the database and store them in memory until
the transaction commits, and only then writes them to the disk.

The most time-intensive component of a transaction is waiting while flushing newly
written data to disk. Using the default auto-committing behavior requires a disk flush for
every primitive write operation. This is very, very expensive! Because all the values read
or written are cached in memory until the transaction completes, the number of flushes can
be dramatically reduced.

But don’t take my word for it, run the following statements and see for yourself the
visceral impact transactions can have on system performance.

(defpclass test ()
((slotl :accessor slotl :initarg :slotl)))

(time (loop for i from O upto 100 do
(make-instance ’test :slotl 1)))

This can take a long time, well over a minute on the CLSQL data store. Here each new
objects that is created has to independantly write its value to disk and accept a disk flush
cost.

(time (with-transaction ()

20 Elephant User Manual

(loop for i from O upto 100 do
(make-instance ’test :slotl 1))))

Wrapping this operation in a transaction dramatically increases the time from 10’s of
seconds to a second or less.

(time (with-transaction ()
(loop for i from O upto 1000 do
(make-instance ’test :slotl 1))))

When we increase the number of objects within the transaction, the time cost does not
go up linearly. This is because the total time to write a hundred simple objects is still
dominated by the disk writes.

These are huge differences in performance! However we cannot have infinitely sized
transactions due to the finite size of the data store’s memory cache. Large operations (such
as loading data into a database) need to be split into a sequential set of smaller transactions.
When dealing with persistent objects a good rule of thumb is to keep the number of objects
touched in a transaction well under 1000.

2.9.6 Transactions and Applications

Designing and tuning a transactional architecture can become quite complex. Moreover,
bugs in your system can be very difficult to find as they only show up when transactions
are interleaved within a larger, multi-threaded application.

In many cases you can simply ignore transactions. For example, when you don’t have
any other concurrent processes running. In this case all operations are sequential and there
is no chance of conflicts. You would only want to use transactions to improve performance
on repeated sets of operations.

You can also ignore transactions if your application can guarantee that concurrency
won’t generate any conflicts. For example, a web app that guarantees only one thread will
write to objects in a particular session can avoid transactions altogether. However, it is
good to be careful about making these assumptions. In the above example, a reporting
function that iterates over sessions, users or other objects may still see partial updates (i.e.
a user’s id was written prior to the query, but not the name). However, if you don’t care
about these infrequent glitches, this case would still hold.

If these cases don’t apply to your application, or you aren’t sure, you will fare best
by programming defensively. Break your system into the smallest logical sets of primitive
operations (i.e. withdraw and deposit) using ensure-transaction and then wrap the
highest level calls made to your system in with-transaction when the operations absolutely
have to commit together or you need the extra performance. Try not to have more than two
levels of transactional accesses with the top using with-transaction and the bottom using
ensure-transaction.

See Section 4.11 [Transaction Details], page 49 for more details and Chapter 6 [Design
Patterns], page 67 for examples of how systems can be designed and tuned using transac-
tions.

Chapter 2: Tutorial 21

2.10 Advanced Topics

The tutorial covers the essential topics and concepts for using Elephant. Many people
will find that these features are the ones that are most often needed and used in ordinary
applications.

More sophisticated uses of Elephant may require additional features that are covered in

the user guide. The following is a list of major features in the user guide that were not
covered in this tutorial.

Using Multiple Threads and Processes What constraints must be accommodated to
use Elephant data stores in multiple threads? What capabilities are there to share data
stores among multiple processes or machines?

Class Heirarchies and Queries There are some subtle issues to take into account when
querying persistent classes. For example, how do you query a base class of type people
to get subclass instances such as employee, manager, consultant, etc?

Derived Class Indices You can create your own indices for classes that are arbitrary
lisp functions of the persistent object.

Dynamic Class Index Management It is possible to add and remove indexes from classes
at runtime.

Class Definition/Database Conflict Resolution When you startup lisp, there are po-
tential conflicts between the class definition and the indexing records in the database.
There are some constraints to account for and some facilities to manage how slots, class
indices and

Indexed BTrees Indexed BTrees are just like BTrees, except it is possible to add indexes
which are BTrees who’s values are primary keys in the parent indexed-btree. This
allows for multiple ordering and groupings of the values of a BTree.

BTree Cursors If you need to do more than iterate over a collection, or you need to
delete elements of the collection as you iterate cursors are an important data structure.
They implement a variety of operators for moving backward and forward over a btree,
including ranged operations and iterating of duplicate or unique values.

Using the Map Operators Mapping operators can be very efficient if properly utilized.
Using Multiple Stores Multiple store controllers can be open simultaneously. However

it does make the code more complex and you need to be careful about how you use
them to avoid crashes and other unpleasant side effects.

Custom Transaction Architecture You can implement your own version of
with-transaction using the underlying controller methods for starting, aborting and
committing transactions. You had better know what you are doing, however!

Handling Errors and Conditions There are a variety of errors that can occur in Elephant
that need to be dealt with by applications.

Deadlock Detection in Berkeley DB Berkeley DB requires an external process to detect
deadlock conditions among transactions. The :deadlock-detect keyword argument to
open-store for Berkeley DB specs will launch this process on most lisps.

Further, see Chapter 6 [Design Patterns], page 67 for information about Elephant design

patterns, solutions to common problems and other scenarios with multiple possible solutions.

22

Elephant User Manual

Chapter 3: Installation 23

3 Installation

3.1 Requirements

Elephant is a multi-platform, multi-lisp and multi-backend system. As such there is a great
deal of complexity in testing. The system has tried to minimize external dependencies as
much as possible to ease installation, but it still requires some patience and care to bring
Elephant up on any given platform. This section attempts to simplify this for new users as
much as possible. Patches and suggestions will be gladly accepted.

3.1.1 Supported Lisp, Platform and Data store combinations

Elephant supports SBCL, Allegro, Lispworks, OpenMCL and CMUCL. Each lisp is sup-
ported on each of the platforms it runs on: Mac OS X, Linux and Windows. As of release
0.6.1, both 32-bit and 64-bit systems should be supported.

Due to the small number of developers and the large number of configurations providing
full test coverage is problematic. There are:

1. Five lisp environments

2. Three Operating System platforms

3. 32-bit or 64-bit OS/compilation configuration

4. Three data store configurations: Berkeley DB, SQLite3 and Postgresql

which means that the total number of combinations to be tested could be as much as:
lisps * 0s * radix x dstore = 5 % 3 x 2 x 3 = 90con figurations

Not all of these combinations are valid, but the implication is that not every combination
will be tested in any given release. The developers and user base regularly use the following
platforms

e 32/64-bit SBCL on Linux and Mac OS X
e 32-bit Lispworks on Windows and Mac OS X
e 32-bit Allegro on Mac OS X
The CLSQL backend is used predominantly under SBCL on Linux and Mac OS X at

the time of writing. The developers will do their best to accomodate users who are keen to
test other combinations, but the above configurations will be the most stable and reliable.

Elephant is now quite stable in general, so don’t be afraid to try an unemphasized
combination - chances are it is just a little more work to bring it up. In particular, Elephant
can probably work with MySQL or Oracle with just a little work, but nobody has asked for
this yet.

3.1.2 Library dependencies

The Elephant core system requires:
1. asdf — http://www.cliki.net/asdf
2. uffi — requires version 1.5.18 or later, http://uffi.b9.com/ or http://www.cliki.net/UFFI]]
3. cl-base64 — http://www.cliki.net/cl-base64

http://www.cliki.net/asdf
http://uffi.b9.com/
http://www.cliki.net/UFFI
http://www.cliki.net/cl-base64

24 Elephant User Manual

4. gce — Your system needs GCC (or Cygwin) to build the Elephant C-based serializer
library. (Precompiled DLL’s are available for Windows platforms on the download
page.

5. rt — The RT regression test sytem is required to run the test suite:
http://www.cliki.net/RT

Follow the instructions at these URLs to download and setup the libraries. (Note:
uffi and cl-base64 are asdf-installable for those of you with asdf-install on your system).
Elephant, however, is not asdf-installable today.

In addition to these libraries, each data store has their own dependencies as discussed
in Section 3.4 [Berkeley DBJ, page 26 and Section 3.7 [CL-SQL], page 27.

3.2 Configuring Elephant

Before you can load the elephant packages into your running lisp, you need to setup the con-
figuration file. Copy the reference file config.sexp from the root directory to my-config.sexp
in the root directory. my-config.sexp contains a lisp reader-formatted list of key-value pairs
that tells elephant where to find various libraries and how to build them.

For example:

#+(and (or sbcl allegro) macosx)

((:berkeley-db-include-dir . "/opt/local/include/db45/")
(:berkeley-db-lib-dir . "/opt/local/lib/db45/")
(:berkeley-db-1lib . "/opt/local/lib/db45/1ibdb-4.5.dylib")
(:berkeley-db-deadlock . "/opt/local/bin/db45_deadlock")
(:compiler . :gcc))

The following is a guide to the various parameters. For simplicity, we include all the
parameters here, although we will go into more detail in each of the data store sections.

e :compiler — This tells Elephant which compiler to use to build any C libraries. The only
options currently are :gcc on Unix platforms and :cygwin for the Windows platform.

e :berkeley-db-include-dir — The pathname for the Berkeley DB include files (db.h)

e :berkeley-db-lib-dir — The pathname for all the Berkeley DB library files

e :berkeley-db-lib — The full pathname for the specific Berkeley DB library (libdb45.s0)

e :berkeley-db-deadlock — The full pathname to the BDB utility function db_deadlock

e :pthread-lib — Not needed for SBCL 9.17+

e :clsql-lib — Currently unused, adds paths to the CL-SQL library search function

The config.sexp file contains a set of example configurations to start from, but you will

most likely need to modify it for your system.

Elephant has one small C library that it uses for binary serialization. This means that
you need to have gcc in your path (see Section 3.9 [Elephant on Windows], page 29 for
exceptions on the Windows platform).

3.3 Loading Elephant

http://www.common-lisp.net/project/elephant/downloads.html
http://www.common-lisp.net/project/elephant/downloads.html
http://www.cliki.net/RT
http://www.cliki.net/ASDF-Install

Chapter 3: Installation 25

3.3.1 Loading Elephant via ASDF
Now that you have loaded all the dependencies and created your configuration file you can
load the Elephant packages and definitions:

(asdf:operate ’asdf:load-op :elephant)

This will load the cl-base64 and uffi libraries. It will also automatically compile and
load the C library. The build process no longer depends on a Makefile and has been
verified on most platforms, but if you have a problem please report it, and any output you
can capture, to the developers at elephant-devel@common-lisp.net. We will update the
FAQ at http://trac.common-lisp.net/elephant with common problems users run into.

3.3.2 Two-Phase Load Process

Elephant uses a two-phase load process. The core code is loaded and the code for a given
data store is loaded on demand when you call open-store with a specification referencing
that data store. The second phase of the load process requires ASDF to be installed on
your system.

(NOTE: There are some good reasons and not so good reasons for this process. One rea-
son you cannot load ele-bdb.asd directly as it depends on lisp code defined in elephant.asd.
We decided not to fix this in the 0.9 release although later releases may improve on this).

3.3.3 Packages

Now that Elephant has been loaded, you can call use-package in the cl-user package,

CL-USER> (use-package :elephant)
=T

use a predefined user package,

CL-USER> (in-package :elephant-user)
=>T

ELE-USER>
or import the symbols into your own project package from :elephant.
(defpackage :my-project
(:use :common-lisp :elephant))

The imported symbols are all that is needed to control Elephant databases and are
documented in detail in Chapter 5 [User API Reference], page 57

3.3.4 Opening a Store

As discussed in the tutoral, you need to open a store to begin using Elephant:
(open-store ’(:BDB "/Users/owner/db/my-bdb/"))

ASDF loading messages
=> #<BDB-STORE-CONTROLLER>

(open-store ’(:CLSQL (:POSTGRESQL "localhost.localdomain"
Ilmydbll “myuser“ nn))))

mailto:elephant-devel@common-lisp.net
http://trac.common-lisp.net/elephant

26 Elephant User Manual

ASDF loading messages

=> #<SQL-STORE-CONTROLLER>

The first time you load a specific data store, Elephant will call ASDF to load all the
specified data store’s dependencies, connect to a database and return the store-controller
subclass instance for that data store.

3.4 Berkeley DB

The Berkeley DB Data Store started out as a very simple data dictionary in the Berkeley
Unix operating system. There are many “Xdb” systems that use the same API, or a
similarly one. A free for non-commercial use version of Berkeley DB is provided by Oracle
corporation with commercial licenses available. Please follow the download and installation
procedures defined here:

http://www.oracle.com/technology/products/berkeley-db/db/index.html
Elephant only works with version 4.5 of BerkeleyDB.

3.5 Setting up Berkeley DB

We recommend that you download and build a distribution from Oracle. Some problems
have been reported with linking to Debian, Cygwin or other packages. This is especially
true for Windows users.

Beyond ensuring that the file “my-config.sexp” points to your BDB installation direc-
tories and files, nothing else should be required to configure the example that uses a local
“testdb” directory as a dabase (under “tests”) in the top-level Elephant directory.

On one Fedora based system, the “my-config.sexp” file looked like this:

((:berkeley-db-include-dir . "/usr/local/BerkeleyDB.4.5/include")
(:berkeley-db-lib-dir . "/usr/local/BerkeleyDB.4.5/1ib")

(:berkeley-db-1lib . "/usr/local/BerkeleyDB.4.5/1ib/1libdb.so")
(:berkeley-db-deadlock . "/usr/local/BerkeleyDB.4.5/bin/db_deadlock")
(:pthread-1lib . nil)

(:clsql-1ib . "/usr/local/share/common-lisp/")

(:compiler . :gcc))

The Section 3.10 [Test Suites], page 29 give a nice example of using BDB by running
the test using the specification:

’(:BDB "<elephant-root>/tests/testdb/")

Once you start working on an application, you will want to change the path to a directory
that is appropriate for your application, and use that as the specification passed to open-
store on application startup.

3.6 Upgrading Berkeley DB Databases

When there is a new release of Elephant, it will depend on a new version of Berkeley DB.
If so, you must upgrade your BDB databases to use the new version Elephant. This forced
upgrade is a consequence of Elephant not parsing the BDB header files which tend to change

Chapter 3: Installation 27

various important constants with each release. These patches are usually minor. Upgrading
also happens because Elephant tries to leverage new features of Berkeley DB.

The rest of this section talks about how to upgrade your existing Berkeley DB databases,
opening them in the new Elephant version and migrating them to a newly created Elephant
database.

3.6.1 Upgrading to 0.9
This section outlines how to upgrade from Elephant version 0.6.0 and Berkeley DB 4.3.
1. Install BDB 4.5 (keep 4.3 around for now)
2. Setup my-config.sexp to point to the appropriate BDB 4.5 directories
3. Upgrade your existing database directory to 4.5
e Run db43_recover in your 0.6 database

e Optional: run db43_archive -d to remove all logs not part of a checkpoint This will
make catastrophic recovery impossible, but reduces the amount of data you have
to backup.

e Backup your db files and remaining logs
e Run db45_checkpoint -1 in the database directory
4. Upgrade 0.6 data to a fresh 0.9 database
e Open your old database: (setf sc (open-store ’ (:BDB "/Users/me/db/ele060/")))|]
e Run upgrade: (upgrade sc ’(:BDB "/Users/me/db/ele090/"))

5. Test your new application and report any bugs that arise to elephant-devel@common-1isp.net]]

(NOTE: close-store may fail when closing the old 0.6 database, this is OK.)

(NOTE: 64-bit lisps will not successfully upgrade 32-bit 0.6 databases. Use a 32-bit
version of your lisp to update to 0.9 and then open that database in your 64-bit lisp. There
should be no compatibility problems. Best to test your application on o 32-bit lisp if you
can, just to be sure.)

3.6.2 Upgrade from Elephant 0.5

Follow the upgrade procedures outlined in the Elephant 0.6.0 INSTALL file to upgrade your
database from 0.5 to 0.6.0. Then follow the above procedures for upgrading to 0.9.

(NOTE: It may not take much work to make 0.9 upgrade directly from 0.5 However there
are so few (none?) 0.5 users that it wasn’t deemed worth the work given that there’s an
upgrade path available.)

3.7 CL-SQL

Although originally designed as an interface to the BerkeleyDB system, the original Ele-
phant system has been extended to support the use of relational database management
systems as the implementation of the persistent store. This relies on Kevin Rosenberg’s
CL-SQL interface, which provides access to a large number of relational systems.

A major motivation of this extension is that one one might prefer the licensing
of a different system. For example, at the time of this writing, it is our inter-
pretation that one cannot use the BerkeleyDB system behind a public website

mailto:elephant-devel@common-lisp.net

28 Elephant User Manual

http://www.sleepycat.com/download/licensinginfo.shtml#redistribute unless one releases
the entire web application as open source.

Neither the PostGres DBMS nor SQLite 3, nor Elephant itself, imposes any such restric-
tion.

Other reasons to use a relational database system might include: familiarity with those
systems, the fact that some part of your application needs to use the truly relational aspects
of those systems, preference for the tools associated with those systems, etc.

Elephant provides functions for migrating data seamlessly between data stores. One can
quite easily move data from a BerkeleyDB repository to a PostGres repository, and vice
versa. This offers at least the possibility than one can develop using one data store, for ex-
ample BerkeleyDB, and then later move to Postgres. One could even operate simultaneously
out of multiple repositories, if there were a good reason to do so.

The SQL implementation shares the serializer with the BDB data store, but base64
encodes the resulting binary stream. This data is placed into a single table in the SQL data
store.

All functionality except for nested transaction support and cursor-puts supported by
the BerkeleyDB data store is supported by the CL-SQL data store. CL-SQL transaction
integrity under concurrent operation has not been extensively stress tested.

Additionally, it is NOT the case that the Elephant system currently provides transaction
support across multiple repositories; it provides transaction support on a per-repository
basis.

The PostGres backend is currently about 5 times slower than the BerkeleyDB backend.

As of the time of this writing, only PostGres and SqlLite 3 have been tested as CL-SQL
backends.

3.8 CL-SQL Example
To set up a PostGres based back end, you should:

1. Install postgres and make sure postmaster is running. Postgres may be installed on
your system; you may be able to use a package manager to install it, or you can install
it from the PostgresSQL site directly (http://www.postgresql.org/).

2. Create a database called “test” and set its permissions to be reached by whatever
connection specification you intend to use. The tests use:

(defvar *testpg-pathx
> (:postgreql "localhost.localdomain" "test" "postgres" ""))

which means that connections must be allowed to the database test, user “postgres”,
no password, connected from the same machine “localhost.localdomain”. (This would
be changed to something more secure in a real application.) Typically you edit the file
: pg_hba.conf to enable various kinds of connections in postgres.

3. Be sure to enable socket connection to postgres when you invoke the postmaster.
4. Test that you can connect to the database with these credentials by running: psql
-h 127.0.0.1 -U postgres test before you attempt to connect with Elephant.

Furthermore, you must grant practically all creation/read/write privileges to the user
postgres on this schema, so that it can construct the tables it needs.

Chapter 3: Installation 29

Upon first opening a CL-SQL based store controller, the tables, indexes, sequences,
and so on needed by the Elephant system will be created in the schema named “test”
automatically.

3.9 Elephant on Windows

The build process on Windows currently only works with GCC under Cygwin. The process
can be a bit tricky, so if it doesn’t work out of the box or you don’t want to install cygwin,
we recommend that you download the DLLs from the Elephant website download page
(http://www.common-lisp.net/project/elephant/downloads.html’).

Unpack the .zip file into the elephant root directory. Ensure that your my-config.sexp
file configuration for Windows has :prebuilt-binaries set to “t” so it will know to look
in the elephant root during the asdf loading process.

For Berkeley DB users we recommend downloading the Windows binary distribution of
Berkeley DB 4.5 to minimize any potential linking issues.

3.10 Test Suites

Elephant has matured quite a bit over the past year or two. Hopefully, it will work out-of-
the-box for you.

However, if you are using an LISP implementation different than the ones on which it is
developed and maintained (see Section 3.1 [Requirements], page 23) or you have a problem
that you think may be a bug, you may want to run the test suites. If you report a bug, we
will ask you to run these tests and report the output. Running them when you first install
the system may give you a sense of confidence and understanding that makes it worth the
trouble.

There are three files that execute the tests. You should choose one as a starting point
based on what backend(s) you are using. If using BerekeleyDB, use

BerkeleyDB-tests.lisp
If using both, use both of the above and also use
MigrationTests.lisp

The text of this file is included here to give the casual reader an idea of how elepant test
can be run in general:
;3 If you are only using one back-end, you may prefer:
;3 SQLDB-test.lisp or BerkeleyDB-tests.lisp
(asdf:operate ’asdf:load-op :elephant)
(asdf:operate ’asdf:load-op :ele-clsql)
(asdf:operate ’asdf:load-op :ele-bdb)
(asdf:operate ’asdf:load-op :ele-sqlite3)

(asdf:operate ’asdf:load-op :elephant-tests)
(in-package "ELEPHANT-TESTS")

;; Test Postgres backend
(setq *default-spec* *testpg-spec*)

http://www.common-lisp.net/project/elephant/downloads.html'

30 Elephant User Manual

(do-backend-tests)

;; Test BDB backend
(setq *default-spec* *testbdb-specx*)
(do-backend-tests)

;; Test SQLite 3
(setq *default-spec* *testsqlite3-specx)
(do-backend-tests)

;; Test a Migration of data from BDB to postgres
(do-migration-tests *testbdb-spec* *testpg-spec*)

;; An example usage.
(open-store *testpg-specx)
(add-to-root "x1" "yi")
(get-from-root "x1")

(add-to-root "x2" ’(a 4 "spud"))
(get-from-root "x2")
The appropriate test should execute for you with no errors. If you get errors, you may
wish to report it the elephant-devel at common-lisp.net email list.
Setting up SQLite3 is even easier. Install SQLite3 (I had to use the source rather than
the binary install, in order to get the dynamic libraries constructed.)

An example use of SQLLite3 would be:

(asdf:operate ’asdf:load-op :elephant)
(asdf:operate ’asdf:load-op :ele-clsql)
(asdf:operate ’asdf:load-op :ele-sqlite3)
(in-package "ELEPHANT-TESTS")
(setq *test-path-primary* ’(:sqlite3 "testdb"))
(do-all-tests-spec *test-path-primaryx*)
The file RUNTESTS.lisp, although possibly not exactly what you want, contains useful
example code.
You can of course migrate between the three currently supported repository strategies
in any combination: BDB, Postgresql, and SQLite3.
In all probability, other relational datbases would be very easy to support but have not
yet been tested. The basic pattern of the “path” specifiers is (cons clsqal-database-type-
symbol (normal-clsql-connection-specifier)).

3.11 Documentation

If you are getting the documentation as a released tar file, you will probably find the
documenation in .html or .pdf form in the release, or can find it at the Elephant website.

If you want to compile the documentation youself, for example, if you can think of a way
to improve this manual, then you will do something similar to this in a shell or command-line
prompt:

Chapter 3: Installation 31

cd doc
make
make pdf

This process will populate the “./includes” directory with references automatically ex-
tracted from the list code. Currently this docstring extraction process relies on SBCL, but
with minor modifications the scripts should work with other lisp environemnts.

The Makefile will then compile the texinfo documentation source into an HTML file and
a PDF file which will be left in the “doc/” directory. An info style HTML tree is also
created in the “doc/elephant” directory. This tree contains one node per HTML file.

Don’t edit anything in the “doc/elephant” directory or the “doc/includes” directories,
as everything in these directories is generated. Instead, edit the “.texinfo” files in the doc
directory.

32

Elephant User Manual

Chapter 4: User Guide 33

4 User Guide

4.1 The Store Controller

An instance of the store-controller class mediates interactions between Lisp and a data
store. All elephant operations are performed in the context of a store controller. To be
more specific, a data store provides a subclass of store-controller specialized to that
data store. Typically this object contains pointers to the disk files, foreign memory regions
and any other necessary bookkeeping information to support Elephant operations such
as slot writes and btree operations. The store also contains the root objects and other
bookeeping common to all data stores.

To obtain a store-controller object, call the function open-store with a store con-
troller specification. The current data store specification formats are:

e Berkeley DB: '(:BDB " /path/to/datastore/directory /")
e CLSQL: ’(:CLSQL (<sql-db-name> <sql-connect-command>))

Valid CLSQL database tags for <sql-db-name> are :SQLITE and :POSTGRESQL. The
<sql-connect-command> is what you would pass to CLSQL’s connect command.

The open store function uses the first symbol in the specification (i.e. :BDB or :CLSQL)
to dispatch instance creation to the specified data store which returns a specialized instance
of store-controller. open-store then initializes the store using an internal call to open-
controller.

The final step of open-store is to set the global variable *store-controller*. This
special variable is used as a default value in the optional or keyword arguments to number
of operations such as:

e make-instance for persistent objects
e get-from-root and add-to-root for accessing a store’s root
e make-btree for creating persistent index instances
Each of these functions also accepts an explicit store controller argument for use in
multiple store environments. Normal applications should only be aware that this global

parameter is used. For further discussion of *store-controller* see Section 4.12 [Multi-
repository Operation|, page 51.

Additionally, open-store accepts data store specific keyword arguments. For example,
you can force recovery to be run on Berkeley DB data stores:
(open-store *my-spec* :recover t)

The data store sections of the user guide (Section 4.17 [Berkeley DB Data Store], page 53
and Section 4.18 [CLSQL Data Store], page 56) list all the data-store specific options to
various elephant functions.

When you finish your application, close-store will close the store controller. Failing
to do this properly may lead to a need to run recovery on the data store during the next
session. Again, see the relevant data store sections for more detail.

34 Elephant User Manual

4.2 Serialization details

There are consequences to trying to move values from lisp memory onto disk in order to
persist them. The first consequence is that that pointers cannot be guaranteed to be valid
and so references to lisp objects cannot be maintained. This is very similar to the problems
with passing references in foreign function interfaces. The second, and more frustrating
limitation is that lisp operations that commit side effects on aggregate objects, such as
objects, arrays, etc, cannot be trapped and replicated on the disk representation. This
leads up to a very important consequence: all lisp objects are stored by wvalue. This policy
has a number of consequences which are detailed below.

4.2.1 Restrictions of Store-by-Value

1. Lisp identity can’t be preserved. Since this is a store which persists across invocations
of Lisp, this probably doesn’t even make sense. However if you get an object from the
index, store it to a lisp variable, then get it again - they will not be eq:

(setq foo (cons nil nil))

=> (NIL)

(add-to-root "my key" foo)

=> (NIL)

(add-to-root "my other key" foo)
=> (NIL)

(eq (get-from-root "my key")
(get-from-root "my other key"))
=> NIL

2. Nested aggregates are serialized recursively into a single buffer. If you store an set of
objects in a hash table you try to store a hash table, all of those objects will get stored
in one large binary buffer with the hash keys. This is true for all aggregates that can
store type T (cons, array, standard object, etc).

3. Circular References. One benefit provided by the serializer is that the recursive serial-
ization process does not lead to infinite loops when they encounter circular references
among aggregate types. It accomplishes this by assigning an ID to any non-atomic ob-
ject and keeping a mapping between previously serialized objects and these ids. This
same mapping is used to reconstruct references in lisp memory on deserialization such
that the original structure is properly reproduced.

4. Storage limitations. The serializer writes sequentially into a contiguous foreign byte
array before passing that array to a given data store’s API. There are practical limits
to the size of the foreign buffer that lisp can allocate (usually somewhere on the order
of 10-100MB due to address space fragmentation). Moreoever, most data stores will
have a practical limit to the size of a transaction or the size of key or value they will
store. Either of these considerations should encourage you to plan to limit the size of
objects that you serialize to disk. A good rule of thumb is to stay under a handful of
megabytes. We have successfully serialized arrays over 100MB in the past, but have
not tested the robustness of these large values over time.

5. Mutated substructure does not persist.

(setf (car foo) T)
=T

Chapter 4: User Guide 35

(get-from-root "my key")

=> (NIL)
This will affect all aggregate types: objects, conses, hash-tables, et cetera. (You can
of course manually re-store the cons.) In this sense elephant does not automatically
provide persistent collections. If you want to persist every access, you have to use
Persistent Sets (see Section 4.5 [Persistent Sets|, page 44) or BTrees (see Section 4.6
[Persistent BTrees], page 44).

6. Serialization and deserialization can be costly. While serialization is pretty fast, but it is
still expensive to store large objects wholesale. Also, since object identity is impossible
to maintain, deserialization must re-cons or re-allocate the entire object every time
increasing the number of GCs the system does. This eager allocation is contrary to
how most people want to use a database: one of the reasons to use a database is if your
objects can’t fit into main memory all at once.

7. Merge-conflicts in heavily multi-process/threaded situations. This is the common read-
modify-write problem in all databases. We will talk more about this in the Section 4.11
[Transaction Details], page 49 section.

8. Byte Ordering. The primitive elements such as integers are written to disk in the
native byte ordering of the machine on which the lisp runs. This means that little
endian machines cannot read values written by big endian machines and vice a versa.

9. Unicode codes and Serialized Strings. The characters and strings stored to disk can
store and recover lisp character codes that implement unicode, but the character maps
are the lisp character maps (produced by char-code) and not strict unicode codes
so lisps may not be able to interoperably read characters unless they have identical
character code maps for the character sets you are reading and writing. All standard
ASCII strings should be portable. Here is what we know about specific lisps, but this
should not be taken as gospel.

e SBCL: In versions with the :sb-unicode feature (after 0.8.17) char-code produces
proper Unicode codes

e Allegro: In the interational version, char-code produces proper Unicode codes for
codes < 2716

e OpenMCL: OpenMCL 1.1 supports unicode, we are unsure about earlier versions

e Lispworks: Lispworks 5 does not, to our knowledge, produce proper Unicode char-
acters. (This can be fized on request iff users ask for it and are willing to pay the
performance hit)

4.2.2 Atomic Types

Atomic types have no recursive substructure. That is they cannot contain arbitrary objects
and are of a bounded size. (Bignums are an exception, but they have a predictable structure
and cannot reference or otherwise encapsulate other objects). The following is a list of atoms
and a discussion of how they are serialized.
e nil: nil has it’s own special tag in the serializer so it is easily identifiable. nil is an
awkward value as it is also a boolean. The boolean value t is stored as the symbol "T.
e fixnums: The serializer will store both 32-bit and 64-bit fixnums. Both types of fixnums
are readable by a 32-bit or 64-bit lisp, but 64-bit fixnums are only written if the
underlying lisp is supports fixnums between 32 and 64 bits.

36

Elephant User Manual

bignums: Bignums are broken into a sequence of fixnum-sized chunks and assembled
by masking words onto the bignum. This is awfully expensive, but it’s always correct
and fully portable.

small-float: Supported only on Lispworks 5 where type small-float is not equivalent
to type single-float as it is on all other supported platforms. Written to disk and
deserialized as a single float so any memory footprint savings of small-float is lost.

single-float: 32-bit floating point numbers

double-float: 64-bit floating point numbers

rational: A rational is merely a ratio of two integers stored as fixnums or bignums.
complex: A complex is a pair of floating point values, rationals or integers.

char: Standalone chars are represented by their char-code and are stored in 32-bit
format to ensure that all lisps are stored correctly.

strings: Strings can be represented as 8, 16 or 32 bit sequences depending on the char-
acter sizes used in the underlying lisp. Because strings can be such a large percentage
of on-disk space, Elephant uses a peculiar method of encoding strings. Strings are
converted from their in-memory representation using char-code. The size of the first
character dictates the word width used for encoding. If a character violates the word
width, the string encoding is aborted and the next larger width is chosen. The rationale
here is that many strings consist of Latin characters with codes less than 256. Strings
stored in other character sets tend to all be of codes > 256. Therefore it is likely that
the first character will properly determine the word size of the string. (On request, we
can easily make a configuration option to fix the word width for encoding)

pathname: A pathname is merely the namestring of the path object stored as a string.
The path object is reconstructed from the namestring using parse-namestring during
deserialization.

symbol: Symbols are stored as two strings, the package name and the symbol name in
that package. When deserialized, the target package is searched for and the symbol is
interned in that package.

4.2.3 Aggregate Types

The next list are aggregate types, meaning that elements of that type can contain references
to elements of type T. That means, in theory, that storing an aggregate type to disk that
refers to other objects can copy every reachable object! This is a direct and dire consequence
of the “store-by-value” restriction. (see Section 4.3 [Persistent Classes and Objects], page 37
for how to design around the store-by-value restriction).

This list describes how aggregates are handled by the serializer.

e cons: Cons is simply stored as a cons record containing two nested elements. Linear

lists are not treated specially (i.e. no cdr-coding) by the serializer.

array: Arrays are stored as sequences of nested, serialized elements. The array param-
eters are also stored so that arrays with fill pointers, adjustable arrays can be stored
and reconstructed. The only arrays that cannot be reproduced are displaced arrays,
which are copied by value and reconstructed as standard arrays during deserialization.

hash-table: Hash tables are stored as a sequence of key-value pairs, where the key and
value can be any serializable value. On deserialization, the reconstructed key and value

Chapter 4: User Guide 37

quantities are written incrementally into the hash table. The hash table does remember
it’s test, rehash size and threshold and it’s total count. The final size of the new hash
table is set to (* (/ size reshash-threshold) rehash-size).

e struct: Structure objects are serialized using the metaprotocol. Each slot where the
value is bound is serialized by serializing the slot name and the value in sequence. The
underlying lisp must support the struct-constructor method so that a new, empty
instance of the structure can be created and then populated by the stored keys and
values.

e object: Instances of subclasses of standard-object are stored almost identically to
structs. The type of the object is stored and the object slots with bound values are seri-
alized as slotname-value pairs. To read an object of this type, the lisp image must have
the class defined and it must have at least the slots that are stored on disk. There is
no good method for schema evolution (redefining objects to have less slots) of ordinary
classes.

One final strategic consideration is to whether you plan on sharing the binary database
between machines or between different lisp platforms on the same machine. This is almost
possible today, but there are some restrictions. In the section Section 4.14 [Repository
Migration and Upgrade], page 51 we will discuss possible ways of migrating an existing
database across platforms and lisps.

4.3 Persistent Classes and Objects

Persistent classes are instances of the persistent-metaclass metaclass. All persistent
classes keep track of which slots are :persistent, :transient and/or :indexed and are
used as specializers in the persistence meta-object protocols (initialization of slots, slot-
access, etc).

All persistent classes create objects that inherit from the persistent class. The
persistent class provides two slots that contain a unique object identifier (oid) and a
reference to the store-controller specification they are associated with. Persistent
slots do not take up any storage space in memory, instead the persistent-metaclass
slot access protocol redirects slot accesses into calls to the store controller. Typically, the
underlying data store will then perform the necessary serialization, deserialization to read
and write data to disk.

When a reference to a persistent instance itself is written to the database, for example
as a key or value in a btree, only the unique ID and class of the instance is stored. When
read, a persistent object instance is re-created (see below). This means that serialization
of persistent objects is exceedingly cheap compared to standard objects. The subsection on
instance creation below will discuss the lifecycle of a persistent object in more detail.

4.3.1 Persistent Class Definition

To create persistent classes, the user needs to specify the persistent-metaclass to the
class initarg :metaclass.

(defclass my-pclass Q)
((slotl :accessor slotl :initarg :slotl :initform 1))
(:metaclass persistent-metaclass))

38 Elephant User Manual

The only differences between the syntax of standard and persistent class definitions is
the ability to specify a slot storage policy and an index policy. Slot value storage policies
are specified by a boolean argument to the slot initargs :persistent, :transient and
:indexed. Slots are :persistent and not :indexed by default.

The defpclass macro is provided as a convenience to hide the :metaclass slot option.

(defpclass my-pclass ()
((pslotl :accessor pslotl :initarg :pslotl :initform ’one)
(pslot2 :accessor pslot2 :initarg :pslot2 :initform ’two
:persistent t)
(tslotl :accessor tslotl :initarg :tslotl :initform ’three
:transient t)))

In the definition above the class my-pclass is an instance of the metaclass persistent-
metaclass. According to this definition pslotl and pslot2 are persistent while tslot1 is
transient and stored in memory.

Slot storage class implications are straightforward. Persistent slot writes are durably
stored to disk and reads are made from disk and can be part of a ACID compliant transaction

Transient slots are initialized on instance creation according to initforms or initargs.
Transient slot values are never stored to nor loaded from the database and their accesses
cannot be protected by transactions. (Ordinary multi-process synchronization would be
required instead).

The :index option tells Elephant whether to maintain an inverted index that maps slot
values to their parent objects. The behavior of indexed classes and class slots are discussed
in depth in Section 4.4 [Class Indices], page 43.

Persistent classes have their metaobject protocols modified through specializations on
persistent-metaclass. These specializations include the creation of special slot metaob-
jects: transient-slot-definition, persistent-slot-definition and direct and effec-
tive versions of each. For the MOP aficionado the highlights of the new class initialization
protocols are as follows:

e shared-initialize :around ensures that this class inherits from persistent-object
and persistent if it doesn’t already and that the class option :index results in class
indexes being indexed;.

e direct-slot-initialization-class returns the appropriate slot metaobject based
on the values of the :transient and :persistent slot definition keywords. It also does
some simple error checking for invalid combinations, for example, indexed transient
slots.

e effective-slot-definition-class performs the same role as the above for effective
slots.

e slot-definition-allocation returns the :database allocation for persistent slot
definitions so the underlying lisp will not allocate instance or class storage under some
lisps.

e compute-effective-slot-definition-initargs performs some error checking to en-
sure a subclass does not try to make an inherited persistent slot transient.

e finalize-inheritance called before the first instance is created in order to finalize the
list of persistent slots to account for any forward referenced classes in the inheritence

Chapter 4: User Guide 39

list. Similarly the list of indexed slots is computed. This function is also called by
the class indexing code if any calls are made that depend on knowing which slots are
indexed.

Reinitialization is discussed in the section on class redefinition.

4.3.2 Instance Creation

Persistent objects are created just like standard objects, with a call to make-instance.
Initforms and slot initargs behave as the user expects. The call to make-instance of a
persistent class will fail unless there is a default store-controller instance in the variable
xstore-controller* or the :sc keyword argument is provided a valid store controller ob-
ject. The store controller is required to provide a unique object id, initialize the specification
pointer of the instance and to store the values of any initialized slots. The initialization
process is as follows:

initialize-instance :before is called to initialize the oid slot and the data store
specification slot dbcn-spc-pst. The oid is set by the argument :from-oid or by
calling the store controller for a new oid.

shared-initialize :around is called to ensure that the underlying lisp does not by-

pass the metaobject protocol during slot initialization by manually initializing the

persistent slots and passing the transient slots to the underlying lisp. Finally it adds

the instance to the class index so that any inverted indicies are updated appropriately.
Persistent slots are initialized only under the following conditions:

An initarg is provided to make-instance

The database slot value is unbound, an initform exists and from-oid was not specified

After initialization the persistent instance is added to its host store controller’s object

cache. This cache is a weak hash table that maps oids to object instances. So after
initialization the following state has been created:

Placeholder Instance: An instance of the class is in memory, containing storage for the
oid, the specification reference, lisp instance data and any transient slot values. We
call this the placeholder instance which mediates access to persistent values, but does
not itself persist.

Cached Reference: A weak reference to the instance is in the store controller object
cache

Memory References: A normal reference to the instance is (maybe) retained by the
caller of make-instance.

Database Slot Values: The data store contains the persistent slot values that were
initialized, indexed by the object id and slot name.

Database References: If the resulting placeholder instance was written to a persistent
slot, added to a btree or the class is indexed, a reference to the instance was written
into the data store. Today this reference consists of an oid and a class name. If
this reference is reachable, then the persistent object can be reconstructed using the
:from-oid argument.

If you mnanually create an object using an OID which already exists in the database,

initargs to make-instance take precedence over existing values in the database, which in
turn take precedence over any initforms defined in the class.

40 Elephant User Manual

4.3.3 Persistent Instance Lifecycle

The distributed nature of persistent instance storage results in some interesting behaviors,
especially with respect to transient slots. The prior section detailed the state of the system
after the original initialization of an object. The object can then be in a number of different
states:

e Resident: The canonical state of an in-use persistent object as described in the initial-
ization section above.

e Unreferenced, Unreclaimed: All memory references to the object have been dropped
but the placeholder instance has not yet been garbage collected. The weak pointer still
exists in the cache. If a database reference is fetched from the data store, the cached
value will be used.

e Non-resident: The object only exists as reachable database references and slot values.
This is the state after garbage collection of the placeholder instance.

e Recreated: An intermediary state where a non resident object is fetched from the data
store and its placeholder object must be recreated prior to the object enter the resident
state.

The garbage collection of the placeholder instance is an important feature. This means
that we can have more objects in our system than are currently resident in memory. If this
were not the case, what would be the point of an object database?

The recreated state deserves to be discussed in more detail. We learned earlier that
the database reference contains the oid and class of the object, and of course we know the
store-controller the reference is stored into!, so this information is sufficient to reconstruct
the placeholder instance.

When the reference is deserialized, its oid is used to look up the object in the store
controller’s object cache. If this fails, then the instance is created with a call much like this:

(make-instance ’pclass :from-oid 2000 :sc *store-controllerx)

The :from-o0id argument to make-instance overrides some of the normal make-instance
behavior by inhibiting all initform initialization as the object’s slots are assumed to be
properly initialized from the original call to make-instance.

4.3.4 Using Transient Slots

What about transient slots? Transients slots are tied to the placeholder object where their
storage is allocated. While the persistent slots are permanently stored in the data store,
transient slots can be garbage collected when all memory references have been dropped,
even if database references exist.

After collection, if you retrieve an object from the store, its transient slots will be reset
to the slot initforms from the class definition. You can only reliably use :initargs to
initialize transient or persistent slots during the initial call to make-instance or when
manually creating the instance from an oid.

Here is an example illustrating the ephemeral nature of transient slots:

L 1If you attempt to store an object from one store into another, the system will issue an error condition
called cross-reference-error

Chapter 4: User Guide 41

(setf pobjl (make-instance ’my-pclass :pslotl 1 :tslot3 3))
=> #<MY-PCLASS>

(pslotl pobjl) => 1
(pslot2 pobjl) => ’two
(tslotl pobjl) => 3

(add-to-root ’pobjl pobjl)

(setf pobj2 (get-from-root ’pobjl))
=> #<MY-PCLASS>

(pslotl pobj2) => 1
(pslot2 pobj2) => ’two
(tslotl pobj2) => 3

(setf pobjl nil)
(setf pobj2 nil)
(ge)

(setf pobj3 (get-from-root ’pobjl))

(pslotl pobj2) => 1

(pslot2 pobj2) => ’two

(tslotl pobj2) => ’three

The implications of this behavior is that you need to think carefully about how to

use employ transient values. Essentially you cannot make assumptions about the state of
transient values in objects loaded from the store unless you know that they were loaded at
some point in time and cannot be GC’ed (i.e. they are stored in a list or hash table).

A good policy is to initialize transient values using an :after method on initialize-
instance. This allows you to initialize transient values using either system defaults or
persistent slot values. That way you can ensure that the transient slots are always in
a consistent state when accessed by the application, regardless of when the placeholder
object was recreated.

In general, transient slots are a good place for intermediate values in a computation
or to cache frequently read items to avoid deserialization overhead. indexed-btree is an
example of this approach, an in-memory hash is cached in the transient slot for reads and
writes are mirrored to a serialized hash in a persistent slot. The :after method just copies
the persistent hash value to the transient slot.

4.3.5 Using Persistent Slots

Persistent slot use is straightforward. You can read from them, write to them or make them
unbound. Remember that every access goes to the data store. This makes reads relatively
expensive as they may result in a disk seek. Writes can be doubly expensive, especially
outside a transaction, as the write will result in a synchronous disk synch operation.

Reads and writes require the home store controller to be valid and open. The placeholder
object’s specification pointer is used to retrieve the store-controller object. If this object

42 Elephant User Manual

is closed or mising, the system will give you a restart option to reopen the controller and
continue.

Persistent slot behavior is implemented by overloading the relevant MOP functions con-
trolling slot access:

e slot-value-using-class

e (setf slot-value-using-class)

e slot-boundp-using-class

e slot-makunbound-using-class

Each of these functions retrieves the home store-controller for the instance and then calls
a method specialized on the class of that store controller. This method is responsible for
mapping the oid and slotname of the slot access to the appropriate value in the data store.

4.3.6 Class Redefinition

Class redefinition is problematic in the current (0.9) version of Elephant. The usual CLOS
mechanisms are properly implemented, but updating instances will only work for those
instances that are in memory at the time. Instances that are non-resident will not be
updated. This is usually not as big a problem as it seems, because the slot values are stored
independently. An outline of the update procedure follows:

The function update-instance-for-redefined-class is called by CLOS whenever
defclass is re-evaluated and results in a change in the list of slots.

For transient slots the behavior is the same as it is in CLOS for all in-memory slots.

e Added slots: are added to the object and their initforms called just as if they were
created without initargs

e Discarded slots: are dropped and their values lost

Persistent slots have a slightly different behavior, as only resident (those with valid
placeholder objects) objects are updated.

e Added slots (resident): are added to the object and the initforms are called only on
in-memory objects, as in an empty call to make-instance

e Added slots (non-resident): the added slots will have unbound values

e Discarded slots (resident): slots are dropped from the class and become inaccessible,
but their values are not deleted from the database. This is a precautionary measure
as losing persistent data because of an accidental re-evaluation while editing a defclass
could be painful. If you add the slot back, the original value will be accessible regardless
of the initform.

e Discarded slots (non-resident): This has the same behavior as resident objects, as no
side effects are made on the objects or their slots

There are additional considerations for matching class indexing options in the class object
to the actual indices in the database. The following section will discuss synchronizing these
if they diverge.

(Note: release 0.9.1 should fix this by providing an oid->class map that allows the system
to cheaply iterate over all objects and update them appropriately. This hasn’t been done yet
due to performance implications. See Trac system for the appropriate tickets)

Chapter 4: User Guide 43

4.3.7 Support for change-class

Elephant also supports the change-class by overloading update-instance-for-
different-class. The handling of slots in this case is identical to the class redefinition
above. Persistent and transient slot values are retained if their name matches a slotname
in the new class and initforms are called on newly added slots. Valid initargs for any slot
will override this default behavior and set the slot value to the initarg value.

Because the instance is guaranteed to be resident, the operation has none of the
resident /non-resident conflicts above.

Change class cannot convert between persistent and non-persistent classes and will flag
an error if you try to do so. (Note: this could be implemented in the future if users request

it)
4.4 Class Indices

You can enable/disable class indexing for an entire class. When you disable indexing all
references to instances of that class are lost. If you re-enable class indexing only newly
created classes will be stored in the class index. You can manually restore them by using
find-class-index to get the clas index BTree if you have an alternate in-memory index.

You can add/remove a secondary index for a slot. So long as the class index remains,
this can be done multiple times without losing any data.

There is also a facility for defining ’derived slots’. These can be non-slot parameters
which are a function of the class’s persistent slot values. For example you can use an index
to keep an alternate representation available for fast indexing. If an object has an x,y
coordinate, you could define a derived index for r,theta which stored references in polar
coordinates. These would be ordered so you could iterate over a class-index to get objects
in order of increasing radius from the origin or over a range of theta.

Beware, however, that derived indices have to compute their result every time you update
any persistent instance’s slot. This is because there is no way to know which persistent slots
the derived index value(s) depends on. Thus there is a fairly significant computational cost
to objects with frequent updates having derived indices. The storage cost, however, may
be less as all that is added is the index value and an OID reference into the class index. To
add a slot value you add a serialized OID+class-ref+slotname to index value which can be
much larger if you use long slotnames and package names and unicode.

Thus, the question of if and how a given class should be indexed is very flexible and
dynamic, and does not need to be determined at the beginning of your development. This
represents the ability to “late bind” the decision of what to index.

In general, there is always a tradeoff: an indexed slot increases storage associated with
that slot and slows down write operations. Reads however remain as fast as for unindexed
persistent slots. The Elephant system makes it simple to choose where and when one wants
to utilize this tradeoff.

Finally, that file ‘src/elephant/classindex-utils.lisp’ documents tools for handling
class redefinitions and the policy that should be used for synchronizing the classes with the
database. This process is somewhat user customizable; documentation for this exists in the
source file referenced above.

44 Elephant User Manual

4.4.1 Synchronizing Classes and Data Stores

Sometimes you may change a defclass form and then connect to a database with instances
that do not match the current defclass definition. Because of the defclass behavior above,
there is no need to detect this case as the behavior will be as if all instances were non-
resident at redefinition time. However, this is an issue for indexed classes as the cost of
indexing is high. There is a synchronization policy which updates either the class or the
online class indexing mechanism at the time you try to perform an index operation (i.e.
when find-class-index is called).

A policy is selected by setting the value of *default-indexed-class-synch-policy*
with the appropriate policy:
e :class - The class is the master, and indices are deleted for any slots that are no longer
indexed

e :db - The database is the master and the class indexing annotations are updated so that
the slots that satisfy class-indexedp-by-name are isomorphic to the existing indices
in the db.

e :union - This does what you would expect, updates the class to match any existing
indices and creates new indices.

Derived slots can be problematic as they may depend on slot values that no longer exist
in the changed defclass. This will result in an error, so for now you will have to manage
any mismatches such as this yourself.

Note: release 0.9.1 should fix both mismatches and performance issues related to derived
indices by allowing the user to provide hints as to which slot values the index depends. This
will allow the system to only update when the appropriate slots change and to delete or
inhibit derived indicies when slots are deleted. We will also improve error handling for this
case, so you can delete the derived index and continue performing the write to o persistent
object that flagged the error.

4.5 Persistent Sets

Persistent sets are fairly straightforward and are well-introduced by the tutorial, please
review the tutorial or read the reference section for persistent sets.

4.6 Persistent BTrees

A BTree is a data structure designed for on-disk databases. It’s design goal is to minimize
the number of disk seeks while traversing the tree structure. In contrast to a binary tree,
the BTree exploits the properties of memory/disk data heirarchies. Disk seeks are expensive
while loading large blocks of data is relatively inexpensive and in-memory scanning of a block
of memory is much cheaper than a disk seek. This means a few, large nodes containing
many keys is a more balanced data structure than

The BTree, or derivatives, are the basis of most record-oriented database including SQL
servers, Berkeley DB and many others. Elephant directly exposes the BTree structure to
the user so the user can decide how best to manage and traverse it. Many of Elephant’s
other facilities, such as the class indexing discussed above, are implemented on top of the
BTree.

Chapter 4: User Guide 45

The basic interface to the BTree is via the get-value method. Both the key and the
value are serialized and then the BTree is traversed according to the sorted order of the key
and the value inserted in its sorted order. Insertion, access and deletion (via remove-kv)
are all O(log N) complexity operations.

Sorting in BTrees requires some discussion. The sorting constraints on btrees are dictated
by the original implementation on Berkeley DB. The Berkeley DB data store sorts keys based
on their serialized representation. The CLSQL implementation has to sort based on the
deserialized lisp value, so sorted traversals require reading all the objects into memory. This
places some limitations on systems that exploit the CLSQL implementation (see Section 4.18
[CLSQL Data Store|, page 56 for more information).

Sorting is done first by primitive type (string, standard-class, array, etc) and then by
value within that type. The type order and internal sorting constraint is:

1. Numbers. All numbers are sorted as a class by their numeric value. Effectively all
numbers are coerced into a double float and sorted relative to each other.

2. Strings. Because the serializer stores strings in variable width structures. Each width
type is sorted separately, then sorted lexically. (NOTE: This should get fixed for 1.0.
Strings should be sorted together)

3. Pathnames. Sorted by their string radix then lexically.
4. Symbols. Sorted by string radix, then lexically.

5. Aggregates. Sorted by type in the following order, then arbitrarily internally. Persistent
instance references, cons, hash-table, standard objects, arrays, structs and then nil.

String comparisons are case insensitive today, so "Adam" = "adam" > "Steve" . When
unicode support is finalized, comparisons will be case sensitive.

Like persistent sets, BTrees are not garbage collected so to recover the storage of a BTree,
just run the function drop-btree to delete all the key-value pairs and return their storage
to the database for reuse. The o0id used by the btree, however, will not be recovered.

4.7 BTree Cursors

Aside from getting, setting and dropping key-value pairs from the database, you can also
traverse the BTree structure one key-value pair at a time.

Cursors must be created in the context of an active transaction (i.e. a with/ensure-
transaction body). A cursor is made through a call to the make-cursor method of the
BTree you wish to traverse. You must ensure that the cursor gets closed when the stack
is unwound; it’s best to use the convenience macro with-btree-cursor instead of make-
cursor.

An existing cursors can also be duplicated within the same transaction by calling cursor-
duplicate which avoids the overhead of setting a second cursor to the same location.

Cursors can be in two states: initialized and uninitialized. Section 5.6 [BTree Cursor
API], page 61 for details.

To initialize a cursor, you have to use one of the initializing functions to select a key-value
pair in the btree.

e cursor-first and cursor-last: initialize the cursor to the first and last element of
the btree, respectively.

46 Elephant User Manual

e cursor-set and cursor-set-range: Sets the cursor to the first key-pair values ac-
cording to the specified key. If the set fails, the cursor will remain uninitialized. The
ranged set will set it to the first key-value pair where the key is equal to or greater
than the key argument.

A valid cursor will return multiple values: (exists? key value). The first argument
tells whether or not the cursor is initialized and pointing at a proper value. The second two
arguments are self-explanatory.

cursor-current returns the current state of the cursor, nil if it is uninitialized.

Once a cursor is properly initialized, it can be incremented or decremented, a simple
constant-time operation on BTrees.

cursor-next and cursor-prev move the cursor a single step forward or back across the
sorted key-value pairs. cursor-next moves in ascending order, cursor-prev in descending
order.

Finally cursors can be used for side effects on the current key-value pair. The function
cursor-put replaces the value (but does not increment the current value) and cursor-
delete deletes the key-value pair and become uninitialized. It is a valid operation to use
the (setf get-value) method while the cursor is active to change the value at the current
Cursor.

If cursors take place within a transaction, what happens when traversing a very large
BTree? This depends on the data store policy regarding whether a cursor read locks its
entire btree (or the subset that is being iterated over) or allows changes to any pairs its
transaction has not changed. See your data store documentation for details.

4.8 BTree Indexing

One powerful feature of Elephant is the ability to add indexes to BTrees. An indexed btree
is a subclass of the standard btree called indexed-btree. The indexed btree maintain a
set of indices (instances of btree-index) which provide alternative ways of indexing into
the values of the main btree.

Each index is itself a btree, but with the property that its values are matched to the
keys of the main btree. That is if you have a btree with key-value pairs:

("henry" . #<name: Henry, age: 45>)
("larry" . #<name: Larry, age: 29>)

You can define an index that is populated by the age of the person object:

(29 . "Larry")
(45 . "Henry")

Now when you call (get-value 29 index) you get back #<name: Larry, age: 29>!
Note also that these new pairs are ordered by age, the opposite of the alphabetic ordering of
the names in the first two pairs. If you read through the tutorial, you may have guessed by
now that this is the mechanism used to implement the class indexing capabilities previously
described.

An index is created by using the add-index function. This function takes the indexed-
btree you wish to index, an symbolic name for the index and a key-form which dictates
how the index populates it’s keys as a function of the main btree’s keys and values. (It is
a function of three arguments: the index itself, the key and the value).

Chapter 4: User Guide 47

A simple, contrived example is shown in the figure below:

Index: mod5 * 2 Primary BTree
10 keys key1 valuel
20 key10 key2 | value2
30 key15 key3 | value3

key4 valued
keys value5

“key-form ‘(lambda (k v)

{if (=0 (mod (val v) 5)
{values t (* 2 (val v})) . H ke valueé
o ok i) Index: odd/bits ke;’: -
1 key1
keyd valued
2 key3
key9 value9
3 keys
key10 | wvaluelO
3 keyT
key11 | valueil
4 key9
key12 | valuei2
4 key11
key13 | wvaluel3
4 key13
key14 | valueld
4 key15 W
| ————H key15 | vaue1s

‘key-form ‘(lambda (k v)
(if (oddp (val v))
(values t (log (val v) 2))
(values nil nil}))

Here we have a primary, indexed btree with a set of keys and values represented by
symbols. We'll declare the function val to take a value symbol and extract it’s number.
The key-form in the mod5 * 2 index is:

(lambda (k v)
(if (= 0 (mod (val v) 5))
(values t (x 2 (val v)))
(values nil nil)))

When a key-value pair is written to the primary btree, the index is automatically updated
through a call to the key-form. If the key-form above is called with keyl and valuel,
val will return 1 which fails the if test. The second values statement, (values nil nil)
indicates that this pair is not to be indexed. If I pass key5 and valueb to this same key
form, T get back 10 as the (val ’valueb) is 5 and (=0 (mod 5 5)) so the form returns
(values t 10) meaning the index should add an index entry of 10 ((* 2 5)) associated
with the key value keyb.

So, of course, making the call (get-value 10 index-mod5) will return value5.

The second index in our little example calculates the number of bits in all odd numbered
values. This illustrates an important property of the btree-index: it allows duplicate keys.
Standard btree and indexed-btree classes are not allowed to have duplicate elements. The
odd index allows us to ask simple questions like: “what are all the odd values with ids that
fit into 4 bits?”.

To extract this set, we have to use cursor functions specifically designed for the index
that iterate over duplicate values.

48 Elephant User Manual

4.9 Index Cursors

Index cursors are just like BTree cursors except you can get the main BTree value instead
of the index value. There are also a parallel set of operations such as cursor-pnext instead
of cursor-next which returns exists, key, primary-btree-value and index-value =
primary-btree-key.

Operations that have the same behavior, but return primary btree values and keys are:

BTree Cursor Function Index Cursor Function
cursor-first => cursor-pfirst
cursor-last => cursor-plast
cursor—current => cursor-pcurrent
cursor-next => cursor-pnext
cursor-prev => cursor-pprev
cursor-set => cursor-pset
cursor-set-range => cursor-set-prange

The big difference between btree cursors and index cursors is that indices can have
duplicate key values. This means we have to choose between incrementing over elements,
unique key-values or only within a duplicate segment. There are cursor operations for each:

e Simple move. Standard btree operations work plus cursor-pnext and cursor-pprev

e Move to a different key value. cursor-pnext-nodup and cursor-pprev-nodup

e Move to next duplicate key value. cursor-pnext-dup and cursor-pprev-dup
After incrementing through a set of duplicate items using a xxx-dup function, the last
next operation returns nil indicating there are no more duplicates. The consequence of this

is that the cursor is now uninitialized (cursor-initialized-p) and needs to be reset by a
set or set both call.

See Section 5.7 [Index Cursor API], page 63 for further details.

4.10 Multi-threaded Applications

Elephant is thread-safe by design. Users should not have to think about threading except
to follow a couple of simple rules.
1. Do not perform transactions across multiple threads

2. Do not perform add/remove index operations on indexed-btrees in more than one
thread.

This and common coding sense should be sufficient! Elephant’s internal design for thread
safety employs a number of policies to try to minimize using lisp locks and simplify analysis
of multi threaded interactions:

Chapter 4: User Guide 49

Rely on the thread safety of the data store databases
Ensure transaction isolation

Minimize dependency on thread-local special variables
Protect shared resources for a given store controller.

Gt W=

A use policy for shared objects (above)
4.10.1 Shared Resources

Elephant has a few shared resources which are protected by standard locks. These are:
e The store controller connection table
e The instance cache

The circularity buffer pool for the serializer

The buffer-stream pool in memutils

In some cases, and on some lisp platforms, we try to use a fast lock strategy for frequently
accessed items (the resource pools and instance cache especially).

4.10.2 Data Store Thread Safety and Transactions

Both CLSQIL and Berkelely DB backends are thread safe. In CLSQL this is by ensuring
that every thread has it’s own handle into the SQL libraries or sockets. Berkeley DB is
reentrant and handles locking internally.

Elephant depends on these guarantees especially for the isolation properties of transac-
tions. All operations in the context of a given transaction should be isolated and atomic.
It is important that a transaction not be shared across threads, however.

4.10.3 Minimize Dependency on Thread-Local Specials

Elephant uses several global variables as default arguments. Most of these were removed
leaving only a couple to handle:

e *store-controller*. Store controller objects can be shared between threads and if
a user resets this variable in a local thread to another controller, there is no problem
with that either. Users of multiple concurrent stores can specify the store controller
to all elephant API commands that don’t get it from a persistent object implicitely.
xcurrent-transaction*. This is always set to the proper null value globally and
should not be reset in local threads. Instead, transactions take place in a dynamic
context that rebinds this variable as a special with the current transaction. This allows
for a dynamic transaction stack for data stores that can nest transactions or when two
datastores are both doing transactions concurrently.

4.11 Transaction Details

Transactions are dynamic contexts in which all side effects to persistent slots and other
persistent objects such as BTrees are guaranteed to have the ACID properties: atomicity,
consistency, isolation and durability. On a normal exit from context, the side effects are
committed as a group. On a non-local exit, the transaction is aborted.

For most users, the tutorial section Section 2.9 [Using Transactions], page 15 is the best
introduction to transactions. This section adds to that by exposing some of the details of
how it is implemented.

50 Elephant User Manual

To reiterate, there are a few important restrictions to adhere to:

e *current-transaction* is reserved for use by the transaction system. Users should
not override, manipulate or close over this variable.

e The body of a transaction cannot throw, signal or jump without aborting the trans-
action. Any non-local exit is considered an aborting event. Catch signals inside the
transaction and return a value instead.

e The dynamic extent of a transaction body must stay within the same thread

4.11.1 with-transaction internals

The with-transaction macro wraps the body expression with an anonymous lambda ex-
pression. This closure is passed to a call to the execute-transaction generic function
which is specialized to the current data store.

The only bookkeeping done by the macro is ensuring that the :parent argument is
checked for the current dynamic transaction context. If it is not owned by the default or
provided store controller, then it is not passed to execute-transaction. This maintains
a continuous dynamic stack transactions through the with/ensure transaction macros, but
allows for a single leaf transaction to another store controller.

Be very careful about mixing transactions between store controller. This facility was
only added to ensure that migrate worked correctly.

The macro processes keywords arguments :store-controller (defaults to *store-
controllerx*), :parent (defaults to *current-transactionx) and :retries and passes
the remaining keywords to the call to execute-transaction allowing the user to pass data
store specific transaction keywords to their preferred data store. The consumed keywords
are analyzed and then passed on to execute-transaction.

Any non-standard keywords for a given data store will be ignored by other data store
implementation of execute-transaction so portable programs should not use keywords
that change the semantics of the transaction.

ensure-transaction only calls execute-transaction if it needs to create a fresh trans-
action. If the transaction in *current-transaction* exists and belongs to the store con-
troller passed to ensure-transaction then it merely calls the transaction closure, relying
on the environment that created the transaction to handle any exit procedures and deter-
mining whether to abort or commit.

current-transaction contains transaction records during the dynamic execution of
a transaction. These records capture any data store specific bookkeeping as well as the
store-controller that the transaction is associated with.

4.11.2 execute-transaction internals
See the Chapter 7 [Elephant Architecture], page 83 section for details on how execute-
transaction works. It will provide some deeper insight into the transaction system.

4.11.3 Building your own transactional framework

Data stores are required to implement three primitive transaction methods:
controller-start-transaction, controller-abort-transaction and controller-
commit-transaction. These are wrappers for the data store’s primitive transaction

Chapter 4: User Guide o1

mechanism. If you use these, it is up to you to make sure that you properly manage nested
transactions, maintain the state of *current-transaction* handle any automated retries
you might want, and handle detecting

If you use these, you are on your own - it is easy to make mistakes with transactions
and create very complex bugs that are hard to track down. Most users are much better
off sticking with the two transaction macros and the underlying execute-transaction
method.

4.11.4 Analyzing Dynamic Transaction Behavior

You can trace elephant: :execute-transaction to see the sequence of calls that occur
dynamically and detect where and how many transactions are and are not happening.

4.12 Multi-repository Operation

Elephant maintains a small hashtable that maps “database specifications” into actual
store-controller objects.

The basic strategy is that the “database specification” object is stored in every persistent
object and collection so that the repository can be found. In this way, objects that reside
in different repositories can coexist within the LISP object space, allowing data migration
or multiple user stores.

All persistent instances store their oid and a store-controller reference in internal slots.
Slot access and other protocols use this to provide access. This executes an auto-transaction
or joins a surrounding transaction if the transaction-record in *current-transaction*
matches the store.

When operating with multiple stores and nested transactions there are some subtle issues
to work around: how to avoid writing one store with a transaction created in the context
of another. A nested or ensured transaction is only indicated in the call to execute-
transaction if the store controllers match, otherwise a new transaction for that store is
created.

4.13 Multiple Processes and Distributed Applications

Just start up two lisp images and connect to the same database. Transactions will ensure
there is no interaction between processes. This has not been extensively tested, but should
work without any problem. Any field experience will get reflected in this section of the
manual

Distributed applications may be supported if the underlying SQL server or an appropri-
ate Berkeley DB database is used. We provide no documentation nor have we heard of this
use-case. This remains fertile ground for future investigation.

4.14 Repository Migration and Upgrade

This version of Elephant supports migration between store controllers of any backend type.
The tests migratel - migrateb are demonstrations of this capability.

There is a single generic function migrate that is used to copy different object types to
a target repository. It is assumed that typically migrate will be called on two repositories

52 Elephant User Manual

and all live objects (those reachable in the root or class-root) will be copied to the target
repository via recursive calls to migrate for specific objects.

When persistent instances are copied, their internal pointer will be updated to point to
the new repository so after migration the lisp image should be merely updated to refer to
the target repository in the *store-controller® variable or whatever variable the application
is using to store the primary controller instance.

There are some limitations to the current migration implementation:
1. Migrate currently will not handle circular list objects

2. Indexed classes only have their class index copied if you use the top level migration.
Objects will be copied without slot data if you try to migrate an object outside of a
store-to-store migration due to the class object belonging to one store or another

3. Migrate assumes that after migration, indexed classes belong to the target store.

4. In general, migration is a one-time activity and afterwards (or after a validation test)
the source store should be closed. Any failures in migration should then be easy to
catch.

5. Each call to migration will be good about keeping track of already copied objects to
avoid duplication. Duplication shouldn’t screw up the semantics, just add storage
overhead but is to be avoided. However this information is not saved between calls
and there’s no other way to do comparisons between objects across stores (different oid
namespaces) so user beware of the pitfalls of partial migrations...

6. Migrate keeps a memory-resident hash of all objects; this means you cannot currently
migrate a store that has more data than your main memory. (This could be fixed by
keeping the oid table in the target store and deleting it on completion)

7. Migration does not maintain OID equivalence so any datastructures which index into
those will have to have a way to reconstruct themselves (better to keep the object
references themselves rather than oids in general) but they can overload the migrate
method to accomplish this cleanly

Users can customize migration if they create unusual datastructures that are not auto-
matically supported by the existing migrate methods. For example, a datastructure that
stores only object OIDs instead of serialized object references will need to overload migrate
to ensure that all referenced objects are in fact copied (otherwise the OIDs will just be
treated as fixnums potentially leaving dangling references.

To customize migration overload a version of migrate to specialize on your specific per-
sistent class type.

(defmethod migrate ((dst store-controller) (src my-class)))

In the body of this method you can call (call-next-method) to get a destination
repository object with all the slots copied over to the target repository which you can
then overwrite. To avoid the default persistent slot copying, bind the dynamic variable
inhibit-slot-writes in your user method using with-inhibited-slot-copy a conve-
nience macro.

4.15 Performance Tuning

Performance is usually measured in transactions per second. Database reads are cheap. To
get more transactions throughput, consider setting

Chapter 4: User Guide 53

(db-env-set-flags (controller-environment *store-controllerx)
1 :txn-nosync t)

or look at other flags in the Berkeley DB docs. This will greatly increase your throughput
at the cost of some durability; I get around a 100x improvement. Durability can be recovered
with judicious use of checkpointing and replication, though this is currently not supported
directly by Elephant — see the sleepycat docs.

The serializer is definitely fast on fixnums, strings, and persistent things. It is fast but
consing with floats and doubles. YMMYV with other values, though I've tried to make them
fast.

Use with-transactions to avoid many automatic transactions, for example you’ll find
that this construct

(dotimes (i 1000) (add-to-root "key" "value"))
is much slower than

(with-transaction ()
(dotimes (i 1000) (add-to-root "key" "value"))))

since there’s only 1 transaction in the latter. However storing transaction state requires
allocated main memory of which there is a finite amount so do not make your transactions
too large.

Use the persistent classes and collections; if you're using transactions correctly they
should be much faster.

If you don’t need transactions you can turn them off. Opening the DB in less concurrent
/ transactional modes will be supported very soon (it’s just an argument change, I think.)
However you will need to ensure that multiple threads do not interleave access so single user
mode is not suitable for use in web servers or other typically multi-threaded applications.

4.16 Garbage Collection

Garbage collection is not implemented as part of the persistent object protocol. However,
the migration (see Section 4.14 [Repository Migration and Upgrade], page 51) mechanism
will consolidate storage and recover OIDs which is an effective offline GC. No online solution
is currently anticipated.

4.17 Berkeley DB Data Store

This section briefly describes special facilities of the Berkeley DB data store and explains
how persistent objects map onto it. Elephant was originally written targeting only Berkeley
DB. As such, the design of Elephant was heavily influenced by the Berkeley DB architecture.

Berkeley DB is a C library that very efficiently implements a database by allowing the
application to directly manipulate the memory pools and disk storage without requiring
communication through a server as in many relational database applications. The library
supports multi-threaded and multi-process transactions through a shared memory region
that provides for shared buffer pools, shared locks, etc. Each process in a multi-process
application is independently linked to the library, but shares the memory pool and disk
storage.

The following subsections discuss places where Berkeley DB provides additional facilities
to the Elephant interfaces described above.

54 Elephant User Manual

4.17.1 Architecture Overview

The Berkeley DB data store (indicated by a :BDB in the data store specification) supports
the Elephant protocols using Berkeley DB as a backend. The primary features of the BDB
library that are used are BTree databases, the transactional subsystem, a shared buffer pool
and unique ID sequences.

All data written to the data store ends up in a BTree slot using a transaction. There are
two databases, one for persistent slot values and one for btrees. The mapping of Elephant
objects is quite simple.

Persistent slots are written to a btree using a unique key and the serialized value being
written. The key is the oid of the persistent object concatenated to the serialized name of
the slot being written. This ordering groups slots together on the disk

4.17.2 Opening a Store
When opening a store there are several special options you can invoke:

e :recover tells Berkeley DB to run recovery on the underlying database. This is rea-
sonably cheap if you do not need to run recovery, but can take a very long time if
you let your log files get too long. This option must be run in a single-threaded mode
before other threads or processes are accessing the same database.

e :recover-fatal runs Berkeley DB catastrophic recovery (see BDB documentation).

e :thread set this to nil if you want to run single threaded, it avoids locking overhead
on the environment. The default is to run free-threaded.

e The :deadlock-detect launches a background process via the run-shell commands of
lisp. This background process connects to a Berkeley DB database and runs a regular
check for deadlock, freeing locks as appropriate when it finds them. This can avoid a
set of annoying crashes in Berkeley DB, the very crashes that, in part, motivated Franz
to abandon AllegroStore and write the pure-Lisp AllegroCache.

4.17.3 Starting a Transaction

Berkeley DB transactions have a number of additional keyword parameters that can help
you tune performance or change the semantics in Berkeley DB applications. They are
summaried briefly here, see the BDB docs for detailed information:

e :degree-2 This option provides for cursor stability, that is whatever object the cur-
sor is currently at will not change, however prior values read may change. This can
significantly enhance performance if you frequently map over a btree as it doesn’t lock
the entire btree, just the current element. All transactions running concurrently over
the btree can commit without restarting. The global parameter *map-using-degree2*
determines the default behavior of this option. It is set to true by default so that map
has similar semantics to lists. This violates both Atomicity and Consistency depending
on how it is used.

e :read-uncommitted Allows reading data that has been written by other transactions,
this avoids the current thread blocking on a read access (for example you are merely
dumping a btree for inspection) so long as you don’t care whether the data you read
changes or not. This violates Atomicity and Consistency depending on how it is used

Chapter 4: User Guide 95

e :txn-nosync Do not flush the log when this transaction completes. This means that
you lose the Durability of a transaction, but gain performance by avoiding the expensive
sync operation.

e :txn-nowait If a lock is unavailable, have the underlying database return a deadlock
message immediately, rather than blocking, so that the transaction restarts.

e :txn-sync This is the default behavior and specifies that the transaction log of the
current transaction is flushed to disk before the transaction commit routine returns.
This provides full ACID compliance.

e :transaction This argument is for advanced use. It tells the Berkeley DB transaction
subsystem the transaction it should use rather than to create a new one. The :parent
argument provides a parent transaction that can result in a true nested transaction.

4.17.4 Special Commands

The berkeley DB data store exports some special facilities that are not currently supported
by other data stores.

e optimize-layout. This function provides an interface to tell Berkeley DB to try to
reclaim freed storage from the file system. This is of limited utility as it can only
shrink database by the number of empty pages at the end of the file. Depending on
what storage you have deleted, this can end up being only a handful or even zero pages.
This will work well if you recently ran an experiment where you created a bunch of
new data, then deleted it all and want to reclaim the space (i.e. you had runaway loop
that was creating endless objects).

e db-bdb:checkpoint. This internal function forces the transaction log to be flushed
and all active data to be written to the database so that the logs and database are
in synch. This is good to run when you want to delete old log files and backup your
database files as a coherent, recoverable set. Run checkpoing, close the database and
then manually run “db_archive -d” on the database to remove old logs. Finally, copy
the resulting data to stable storage. Read the Berkeley DB docs for more details of
backing up and checkpointing.

4.17.5 Performance Tuning

Performance tuning for Berkeley DB is a complex topic and we will not cover it here. You
need to understand the Berkeley DB data store architecture, the transaction architecture,
the serializer and other such parameters. The primary performance related parameters are
described in config.sexp. They are:

e :berkeley-db-map-degree2 - Improve the efficiency of cursor traversals in the various
mapping functions. Defaults to true, meaning a value you just read while mapping
may change before the traversal is done. So if you operate only on the current cursor
location, you are guaranteed that it’s value is stable.

e :berkeley-db-cachesize - Change the size of the buffer cache for Berkeley DB to
match your working set. Default is 10MB, or about twenty thousand indexed class
objects, or 50k standard persistent objects. You can save memory by reducing this
value.

56 Elephant User Manual

4.18 CLSQL Data Store

Elephant uses Kevin Rosenberg’s excellent CLSQL CLSQL lisp binding to relational data-
bases (it does not use the ORM functionality offered by that package.) CLSQL interfaces
to many databases (Postgres, MySQL, Oracle, ODBC, SQLite3, Microsoft SQL Server (via
ODBC)). Right now, Elephant has been tested with Postgress and SQLite3. Probably get-
ting it to work with one of the others will take a small amount of debugging; in principle
there is no reason it won’t work out of the box. We invite users to try other database, and
will quickly incorporate patches needed to make them work.

Because CLSQL is very generic, the CLSQL interface does not offer any special feature
as discussed in the previous section Section 4.17 [Berkeley DB Data Store], page 53.

4.18.1 Basic CLSQL Implementation

The CLSQL uses base64 encoding to store binary data as text directly. This has the
advantage that it works with all databases, which tend to differ widely in their treatment
of Binary Large Objects (BLOBs.) It imposes some obvious overhead.

The CLSQL implementation is structurally exactly the same as the BDB implementa-
tion. A single table is created to hold all (key,value) pairs. An index on the key column
provides efficient key lookup. No additional indexing offered by the underlying databases is
used. This has the advantage that the API is exactly the same as the BDB api, and all of
the functional indexes, cursors, and secondary indexes work exactly the same way. It does
not exploit the performance that a database-specific solution would offer (see Section 4.19
[Postmodern Data Store], page 56 for an example of such a system.

Our basic strategy is to leave the CLSQL interface as simple as possible, in order to
work with as many databases as possible. When there is enough motivation to support a
backend that is specific to one database (and therefore probably faster), such an interface
can be placed into the “contrib” directory and migrated into the main code base as time
allows the complete integration with the test suite.

4.19 Postmodern Data Store

The postmodern data store is not yet integrated. It should be documented for the forth-
coming release 0.9.1 or 0.9.2.

This backend will presumably be much faster, when used against PostGres, than the
generic CLSQL store.

4.20 Native Lisp Data Store

The native lisp data store is unimplemented. It is tentatively planned for a 1.1 release
sometime in the distant future. Yes, this is a deliberatively vague declaration.

http://clsql.b9.com

Chapter 5: User API Reference Y4

5 User API Reference

5.1 Store Controllers

Store controllers provide the persistent storage for CLOS objects and BTree collections.
Any persistent operations must be done in the context of a store controller. The default
store-controller is stored in a global variable.

elephant:*store-controller* [Variable]
The store controller which persistent objects talk to.

[Class elephant:store-controller], page 89 is associated with the following user methods
and macros:

elephant:with-open-store spec &body body [Macro]
Executes the body with an open controller, unconditionally closing the controller on
exit.

elephant:open-store spec &rest args [Function]

Conveniently open a store controller. Set *store-controller® to the new controller
unless it is already set (opening a second controller means you must keep track of
controllers yourself. *store-controller® is a convenience variable for single-store ap-
plications or single-store per thread apps. Multi-store apps should either confine
their *store-controller® to a given dynamic context or wrap each store-specific op in
a transaction using with or ensure transaction. Returns the opened store controller.

elephant:close-store &optional sc [Function]
Conveniently close the store controller. If you pass a custom store controller, you are
respousible for setting it to nil.

elephant:get-from-root key &key sc [Function]
Get the value associated with key from the root. Returns two values, the value, or
nil, and a boolean indicating whether a value was found or not (so you know if nil is
a value or an indication of non-presence)

elephant:add-to-root key value &key sc [Function]
Add an arbitrary persistent thing to the root, so you can retrieve it in a later session.
Anything referenced by an object added to the root is considered reachable and thus
live

elephant:remove-from-root key &key sc [Function]
Remove something from the root by the key value

elephant:root-existsp key &key sc [Function]
Test whether a given key is instantiated in the root

elephant :map-root fn &key sc [Function]
Takes a function of two arguments, key and value, to map over all key-value pairs in
the root

58 Elephant User Manual

5.2 Persistent Objects

[Class elephant:persistent-metaclass], page 92 can be used as the :metaclass argument in
a defclass form to create a persistent object. Slots of the metaclass take the :index and
:transient keyword arguments and the class accepts the :index keyword argument.

elephant:defpclass cname parents slot-defs &rest class-opts [Macro]
Shorthand for defining persistent objects. Wraps the main class definition with
persistent-metaclass

elephant:drop-instance persistent-object [Generic Function]
drop-instance reclaims persistent object storage by unbinding all persistent slot values.
It can also helps catch errors where an object should be unreachable, but a reference
still exists elsewhere in the db. On access, the unbound slots should flag an error
in the application program. important: this function does not clear any serialized
references still in the db. Need a migration or gc for that! drop-instances is the
user-facing call as it implements the proper behavior for indexed classes

5.3 Persistent Object Indexing

5.3.1 Indexed Object Accessors

elephant :map-class fn class &key collect oids sc [Function]
Perform a map operation over all instances of class. Takes a function of one argument,
a class instance.

elephant :map-inverted-index fn class index &rest args &key start [Function]
end value from-end collect oids
map-inverted-index maps a function of two variables, taking key and instance, over
a subset of class instances in the order defined by the index. Specify the class by
classname or class object and index by quoted name. The index may be a slot index,
derived index, or a valued association slot.

To map only a subset of key-value pairs, specify the range using the :start and :end
keywords; all elements greater than or equal to :start and less than or equal to :end
will be traversed regardless of whether the start or end value is in the index.

Use nil in the place of start or end to specify the first element or last element, respec-
tively.

To map a single value, iff it exists, use the :value keyword. This is the only way to
travers all nil values.

To map from :end to :start in descending order, set :from-end to true. If :value is
used, :from-end is ignored

The ’0ids’ argument passes the oid of the instance to the provided function instead
of the recreated instance.

elephant:get-instances-by-class persistent-metaclass [Generic Function]
Retrieve all instances from the class index as a list of objects

Chapter 5: User API Reference 59

elephant:get-instance-by-value persistent-metaclass [Generic Function]
slot-name value

Retrieve instances from a slot index by value. Will return only the first instance if
there are duplicates.

elephant:get-instances-by-value persistent-metaclass [Generic Function]
slot-name value
Returns a list of all instances where the slot value is equal to value.

elephant:get-instances-by-range persistent-metaclass [Generic Function]
slot-name start end

Returns a list of all instances that match values between start and end. An argument

of nil to start or end indicates, respectively, the lowest or highest value in the index

elephant:drop-instances instances &key sc txn-size [Function]
Removes a list of persistent objects from all class indices and unbinds any persistent
slot values associated with those instances

5.4 Persistent Sets

Persistent sets are a simple persistent collection abstraction. They maintain an unordered
collection of objects. Unlike the normal list-oriented sets of Lisp, persistent sets use the
equivalent of pushnew such that only one copy of any object or value is maintained using
the serializer’s equal implementation.

elephant:pset [Class]
Class precedence list: pset, persistent-collection, persistent,
standard-object, t
An unordered persistent collection of unique elements according to serializer equal
comparison

elephant:insert-item item pset [Generic Function]
Insert a new item into the pset

elephant:remove-item item pset [Generic Function]
Remove specified item from pset

elephant:find-item item pset &key key test test [Generic Function]
Find a an item in the pset using key and test

elephant :map-pset fn pset [Generic Function]
Map operator for psets

elephant:pset-list pset [Generic Function]
Convert items of pset into a list for processing

elephant:drop-pset pset [Generic Function]
Release pset storage to database for reuse

60 Elephant User Manual

5.5 BTrees

Persistent collections inherit from [Class elephant:persistent-collection], page 93 and consist
of the [Class elephant:btree], page 93, [Class elephant:indexed-btree], page 94 and [Class
elephant:btree-index], page 93 classes. The following operations are defined on most of
these classes. More information can be found in Section 4.6 [Persistent BTrees], page 44
and Section 4.8 [BTree Indexing], page 46.

elephant:make-btree [Function]
Constructs a new BTree instance for use by the user. Each backend returns its own
internal type as appropriate and ensures that the btree is associated with the store-
controller that created it.

elephant:get-value key bt [Generic Function]
Get a value from a Btree.

Values are written to a btree using the setf method on get-value.

elephant:remove-kv key bt [Generic Function]
Remove a key / value pair from a BTree.

elephant:remove-kv key (bt btree-index) [Method]
Remove a key / value from the primary by a secondary lookup, updating all other
secondary indices.

elephant:existsp key bt [Generic Function]
Test existence of a key / value pair in a BTree

elephant :drop-btree bt [Generic Function]
Delete all key-value pairs from the btree and render it an invalid object in the data
store

elephant :map-btree fn btree &rest args &key start end value [Generic Function]

from-end collect value &allow-other-keys
Map btree maps over a btree from the value start to the value of end. If values are not
provided, then it maps over all values. BTrees do not have duplicates, but map-btree
can also be used with indices in the case where you don’t want access to the primary
key so we require a value argument as well for mapping duplicate value sets. The
collect keyword will accumulate the results from each call of fn in a fresh list and
return that list in the same order the calls were made (first to last).

These functions are only defined on indexed btrees.

elephant:make-indexed-btree [Function]
Constructs a new indexed BTree instance for use by the user. Each backend returns
its own internal type as appropriate and ensures that the btree is associated with the
store-controller that created it.

Chapter 5: User API Reference 61

elephant:add-index bt &key index-name key-form populate [Generic Function]
Add a secondary index. The indices are stored in an eq hash-table, so the index-name
should be a symbol. key-form should be a symbol naming a function, a function call
form eg ’(create-index 3) or a lambda expression -- actual functions aren’t supported.
Lambda expresssions are converted to functions through compile and function call
forms are transformed applying the first element of the list to the rest of the list.
The function should take 3 arguments: the secondary db, primary key and value, and
return two values: a boolean indicating whether to index this key / value, and the
secondary key if so. If populate = t it will fill in secondary keys for existing primary
entries (may be expensive!)

elephant:get-index bt index-name [Generic Function]
Get a named index.

elephant:get-primary-key key bt [Generic Function]
Get the primary key from a secondary key.

elephant:remove-index bt index-name [Generic Function]
Remove a named index.

This function is only valid for indexes.

elephant :map-index fn index &rest args &key start end value [Generic Function]
from-end collect value &allow-other-keys

Map-index is like map-btree but for secondary indices, it takes a function of three
arguments: key, value and primary key. As with map-btree the keyword arguments
start and end determine the starting element and ending element, inclusive. Also,
start = nil implies the first element, end = nil implies the last element in the index.
If you want to traverse only a set of identical key values, for example all nil values,
then use the value keyword which will override any values of start and end. The
collect keyword will accumulate the results from each call of fn in a fresh list and
return that list in the same order the calls were made (first to last)

5.6 Btree Cursors

Cursors are objects of type cursor (see [Class elephant:cursor|, page 94) which provide
methods for complex traversals of BTrees.

elephant:with-btree-cursor var &body body [Macro]
Macro which opens a named cursor on a BTree (primary or not), evaluates the forms,
then closes the cursor.

elephant:make-cursor bt [Generic Function]
Construct a cursor for traversing B'Trees.

elephant:cursor-close cursor [Generic Function]
Close the cursor. Make sure to close cursors before the enclosing transaction is closed!

62 Elephant User Manual

elephant:cursor-duplicate cursor [Generic Function]
Duplicate a cursor.

Each of the following methods return multiple values consisting of (exists? key value).

elephant:cursor-current cursor [Generic Function]
Get the key / value at the cursor position. Returns has-pair key value, where has-pair
is a boolean indicating there was a pair.

elephant:cursor-first cursor [Generic Function]
Move the cursor to the beginning of the BTree, returning has-pair key value.

elephant:cursor-last cursor [Generic Function]
Move the cursor to the end of the BTree, returning has-pair key value.

elephant:cursor-next cursor [Generic Function]
Advance the cursor, returning has-pair key value.

elephant:cursor-prev cursor [Generic Function]
Move the cursor back, returning has-pair key value.

elephant:cursor-set cursor key [Generic Function]
Move the cursor to a particular key, returning has-pair key value.

elephant:cursor-set-range cursor key [Generic Function]
Move the cursor to the first key-value pair with key greater or equal to the key
argument, according to the lisp sorter. Returns has-pair key value.

elephant:cursor-get-both cursor key value [Generic Function]
Moves the cursor to a particular key / value pair, returning has-pair key value.

elephant:cursor-get-both-range cursor key value [Generic Function]
Moves the cursor to the first key / value pair with key equal to the key argument and
value greater or equal to the value argument. Not really useful for us since primaries
don’t have duplicates. Returns has-pair key value.

elephant:cursor-delete cursor [Generic Function]
Delete by cursor. The cursor is at an invalid position, and uninitialized, after a
successful delete.

elephant:cursor-put cursor value &key key [Generic Function]
Overwrite value at current cursor location. Cursor remains at the current location

Chapter 5: User API Reference 63

5.7 Index Cursors

Index cursors are made the same way standard cursors are, with a call to make-cursor,
except with the index as the argument instead of a standard btree. In addition to the
standard cursor operations, which provide the direct key and value of a btree-index, the
following class of “p” cursors work on an index and allow you to get the primary value of
the indexed-btree that the btree-index belongs to.

They each return multiple values (exists? key primary-value primary-key).

elephant:cursor-pcurrent cursor [Generic Function]
Returns has-tuple / secondary key / value / primary key at the current position.

elephant:cursor-pfirst cursor [Generic Function]
Moves the key to the beginning of the secondary index. Returns has-tuple / secondary
key / value / primary key.

elephant:cursor-plast cursor [Generic Function]
Moves the key to the end of the secondary index. Returns has-tuple / secondary key
/ value / primary key.

elephant:cursor-pnext cursor [Generic Function]
Advances the cursor. Returns has-tuple / secondary key / value / primary key.

elephant:cursor-pprev cursor [Generic Function]
Moves the cursor back. Returns has-tuple / secondary key / value / primary key.

elephant:cursor-pset cursor key [Generic Function]
Moves the cursor to a particular key. Returns has-tuple / secondary key / value /
primary key.

elephant:cursor-pset-range cursor key [Generic Function]
Move the cursor to the first key-value pair with key greater or equal to the key
argument, according to the lisp sorter. Returns has-pair secondary key value primary
key.

elephant:cursor-pget-both cursor key value [Generic Function]
Moves the cursor to a particular secondary key / primary key pair. Returns has-tuple
/ secondary key / value / primary key.

elephant:cursor-pget-both-range cursor key value [Generic Function]
Moves the cursor to a the first secondary key / primary key pair, with secondary key
equal to the key argument, and primary key greater or equal to the pkey argument.
Returns has-tuple / secondary key / value / primary key.

elephant:cursor-next-nodup cursor [Generic Function]
Move to the next non-duplicate element (with different key.) Returns has-pair key
value.

64 Elephant User Manual

elephant:cursor-next-dup cursor [Generic Function]
Move to the next duplicate element (with the same key.) Returns has-pair key value.

elephant:cursor-pnext-nodup cursor [Generic Function]
Move to the next non-duplicate element (with different key.) Returns has-tuple /
secondary key / value / primary key.

elephant:cursor-pnext-dup cursor [Generic Function]
Move to the next duplicate element (with the same key.) Returns has-tuple / sec-
ondary key / value / primary key.

elephant:cursor-prev-nodup cursor [Generic Function]
Move to the previous non-duplicate element (with different key.) Returns has-pair
key value.

elephant:cursor-prev-dup cursor [Generic Function]
Move to the previous duplicate element (with the same key.) Returns has-pair key
value.

elephant:cursor-pprev-nodup cursor [Generic Function]

Move to the previous non-duplicate element (with different key.) Returns has-tuple
/ secondary key / value / primary key.

elephant:cursor-pprev-dup cursor [Generic Function]
Move to the previous duplicate element (with the same key.) Returns has-tuple /
secondary key / value / primary key.

5.8 Transactions

elephant:with-transaction &rest &body body [Macro]
Execute a body with a transaction in place. On success, the transaction is committed.
Otherwise, the transaction is aborted. If the body deadlocks, the body is re-executed
in a new transaction, retrying a fixed number of iterations. If nested, the backend
must support nested transactions.

The following functions are an advanced use of the transaction system. They may be
useful if, or example, you want to integrate Elephant transactions with non-Elephant side-
effects that you explicitely make transactional.

elephant:controller-start-transaction store-controller [Generic Function]
&key &allow-other-keys
Start an elephant transaction

elephant:controller-abort-transaction store-controller [Generic Function]
transaction &key &allow-other-keys
Abort an elephant transaction

elephant:controller-commit-transaction store-controller [Generic Function]
transaction &key &allow-other-keys
Commit an elephant transaction

Chapter 5: User API Reference 65

5.9 Migration and Upgrading

Upgrade is a call to Migrate with checks for compatability. The migrate methods are
included here in case you wish to develop a more specific “partial upgrade” or “partial
migrate” of data from one store to another instead of using the top-level copy which migrates
all live objects.

elephant:upgrade sc spec [Generic Function]
Given an open store controller from a prior version, open a new store specified by
spec and migrate the data from the original store to the new one, upgrading it to the
latest version

elephant:migrate dst src [Generic Function]
Migrate an object from the src object, collection or controller to the dst controller.
Returns a copy of the object in the new store so you can drop it into a parent object
or the root of the dst controller

elephant:migrate (dst store-controller) (src hash-table) [Method]
Migrate each hash element as the types are non-uniform

elephant:migrate (dst store-controller) (src array) [Method]
We really only need to handle arrays of type ’t’ that point to other objects; fixnum,
float, etc array can just be written to the new store but we don’t bother to optimize
here

elephant:migrate (dst store-controller) (src cons) [Method]
warning: This doesn’t work for circular lists

elephant:migrate (dst store-controller) (src pathname) [Method]
Migrate pathname as just return itself

elephant:migrate (dst store-controller) (src structure-object) [Method]
Walks structure slot values and ensures that any persistent references are written
back into the slot pointint to the new store

elephant:migrate (dst store-controller) (src standard-object) [Method]
If we have persistent objects that are unindexed and only stored in a standard object
slot that is referenced from the root, then it will only be copied by recursing through
the slot substructure just as the serializer will, but copying any persistent objects
found

elephant:migrate (dst store-controller) (src indexed-btree) [Method]
Also copy the inverse indices for indexed btrees

elephant:migrate (dst store-controller) (src btree) [Method]
Copy an index and it’s contents to the target repository

66 Elephant User Manual

elephant:migrate (dst store-controller) (src persistent) [Method]
Migrate a persistent object and apply a binary (lambda (dst src) ...) function to the
new object. Users can override migrate by creating a function that calls the default
copy and then does stuff with the slot values. A dynamic variable: *inhibit-slot-copy*
can be bound in the caller to keep the new object from having its slots copied

after elephant:migrate (dst store-controller) (src store-controller) [Method]
This method ensures that we reset duplicate object detection over the store-controller

before elephant:migrate (dst store-controller) (src store-controller) [Method]
This method ensures that we reset duplicate object detection over the store-controller

before elephant:migrate (dst store-controller) (src persistent) [Method]
This provides some sanity checking that we aren’t trying to copy to the same con-
troller. We also need to be careful about deadlocking our transactions among the two
gets/puts. Each leaf migration should be in its own transaction to avoid too many
write locks.

elephant:migrate (dst store-controller) src [Method]
Default: standard objects are automatically migrated

Chapter 6: Design Patterns 67

6 Design Patterns

This chapter explores different ways that Elephant can be used to solve common problems in
user programs. The term “Design Pattern” may be overkill as there is no formal specification
of patterns. However the goals is similar to classical design patterns: provide a coherent
description of how to approach ceratain common problems using Elephant as an enabling
tool.

Most of this chapter falls short of a tutorial in the application of a pattern. Instead it
provides a conceptual guide to implementing the pattern along with some code examples
to show how Elephant features are invoked to support the pattern.

The authors hope that users of Elephant will find this a good source of inspiration for
how to apply Elephant to their own programs and that they will be motivated to contribute
design patterns of their own.

6.1 Persistent System Objects

The simplest design pattern supported by Elephant is the use of persistent objects in the
place of standard objects. Typically you can just modify the old class definition to inherit
the persistent-metaclass. Depending on your application, objects may need to have
transient slots for performance reasons. We’ll create a dummy class to illustrate:

(defclass system-object ()
((appname :accessor system-appname :initarg :name)
(url :accessor system-url :initarg :url)
(state :accessor system-state :initarg :state :initform ’idle))
(:metaclass persistent-metaclass))

When starting up your application you need to recover references to any persistent
objects that were created in a prior session or initialize a new one.

If you are storing system objects in parameters, you can just call an initialization function
on startup:

(defparameter *system* nil)

(defun initialize-system (appname)
(let ((system-object (get-from-root ’*system*)))
(setf *system
(if system-object system-object
(make-instance ’system-object :name appname)))))

*systemx
=> #<SYSTEM-0BJECT ...>

And now you can use your parameter as you did before. If you want to avoid calling
initialization functions, you can just accesss system objects through functions instead of
parameters.

(defparameter #*system* nil)

(defun sys-object ()

68 Elephant User Manual

(unless *system
(let ((appname (get-application-name))
(url (get-system-url)))
(setf *system* (make-instance ’system-object
:name appname
:url url))))
*xsystemx)

(sys-object)
=> #<SYSTEM-O0BJECT ...>

One constraint to keep in mind is that slot access will be slower as it has to synchronize
to disk. This is usually not noticable for objects that are accessed on the order of seconds
instead of milliseconds. For objects read constantly, but where you want to save any written
values it helps to have a transient slot to cache values. You can override some methods to
ensure that the persistent value is always updated, but that reads happen from the cached
value and that the cached value is restored whenever the object is loaded.

(defclass system-object ()
((appname :accessor system-appname :initarg :name)
(url :accessor system-url :initarg :url)
(laststate :accessor system-laststate :initarg :state
tinitform ’idle)
(state :accessor system-state :initarg :state :transient t)
(:metaclass persistent-metaclass))

(defmethod (setf system-state) :after (state (sys system-state))
(setf (system-laststate sys) state))

(defmethod initialize-instance :after ((sys system-state) &rest rest)
(declare (ignore rest))
(when (slot-boundp sys ’laststate)
(setf (system-state sys) (system-laststate sys))))

And now you have an instant read cache for a slot value. This pattern is used several
times within the Elephant implementation.

6.2 File System Replacement

One of the more annoying time-wasting activities in programming is saving and restoring
data from disk. Data in configuration files, static data such as graphics and other formats
take time and attention away from solving the main problem and are additional sources of
bugs. Because Elephant’s serializer supports most lisp types, Elephant can greatly simplify
ease these concerns and allow you to work directly with your natural in-memory represen-
tations with almost no work to encode/decode formats or manage files in the file system®.

The simplest way to accomplish this is to simply open a store controller and initialize
a key-value pair in the root btree as a instead of a filename and file data in some system

1 Example provided by Ian Eslick, April 2007

Chapter 6: Design Patterns 69

directory. Like the initialization process described for standard objects, you can hide some
of the details like this:

(defvar *resources* (make-hash-table))

(defun get-resource (name)
(multiple-value-bind (value foundp) (gethash name *resourcesx*)
(if foundp
value
(multiple-value-bind (value foundp) (get-from-root name)
(if foundp

value
(error "Resource named "A was not initialized" name))))))

(defun set-resource (value name)
(add-to-root name value)
(setf (gethash name *resources*) value))

(defsetf get-resource set-resource)

Another simple metaphor is to use Elephant btrees as persistent hash tables that persist
key-value pairs for you. We’ll wrap the Elephant btree in a simple class to provide a little
conceptual isolation.

(defclass phash ()
((btree :accessor phash-btree :initarg :btree
:initform (make-btree))))

(defun make-persistent-hash (name)
(let ((btree (get-from-root name)))
(if btree
(make-instance ’phash :btree btree)
(let ((phash (make-instance ’phash)))
(add-to-root name (phash-btree phash))
phash))))

(defun getphash (key phash)
(get-value key (phash-btree phash)))

(defun setphash (value key phash)
(setf (get-value key (phash-btree phash)) value))

(defsetf getphash setphash)
Of course to make a proper abstraction we’d want to provide some conditions that

allowed restarts that initialized values or allowed users to update the hash in the background
and continue computation.

70 Elephant User Manual

6.3 Checkpointing Conventional Program State

Another challenge for many programs is saving some subset of program state. This could
involve checkpointing an evolving computation, keeping track of state for the purposes of
'undo’ or enabling crash recovery at key points in the program’s execution.

One approach is to transform all our program state into persistent objects. However
if the use of program state is slot-access intensive, this can have a significant performance
impact. To improve the performance of the application, careful use of transactions is needed
which further complicates program design and operation.

Can Elephant be used to provide a simple solution that retains the in-memory per-
formance that we want? Can we do all this without having to put a ton of persistence
assumptions into our main program code? The answer is yes, assuming you are willing to
explicitly checkpoint your code and adhere to some simple constraints in accessing your
program objects.

6.3.1 Assumptions

To maintain processing speed and convenience we would like all our objects to be standard
lisp objects without special harnesses that would interfere with applying the full power of
lisp. At some point during execution, we want to store the current state of a set of objects
to disk and yet make it easy to reproduce the original state at a later point in time. For
simplicity, we’ll limit ourselves to collections of CLOS objects.

A complication is that many programs have sets of interdependant objects. These could
be complex program graphs, the state of an ongoing search process or a standard OO system
that uses a bunch of different program object types to run. This means that we need to
persist not just object state, but also references to other objects.

Using CLOS reflection we can provide a general solution to capturing objects, slot values
and references. However to reproduce references, we’ll need to be able to find the object
referenced and the only way to do that is to store it as well. Thus we want to create a
snapshot of a closed set of self-referential objects.

The assumptions underlying the snapshot mechanism is:

e Use standard CLOS objects and references to other CLOS objects. We need reflection
to

e Use standard hash tables to keep track of sets of objects. Your program should use the
hash table as an entry point to find objects. When objects are restored, just replace an
existing hash table with the new one and access your objects that way. Any parts of
your program that have pointers into your objects but are not themselves snapshotted,
will need to be able to refresh their pointers in some way.

e Find your root object (s) and know what is “reachable” from them. Ensure that you
aren’t referring to standard objects outside those you want to store as they will be
stored too (persistent object references are fine though). Make sure your root refers to
objects that refers to other objects and so on such that all objects you want to store
can be reached by some set of pointer traversals. Looping references are fine.

Chapter 6: Design Patterns 71

6.3.2 Snapshot Set

The snapshot implementation is called a snapshot-set. The next section will go into detail,
but a walkthrough will help make it clearer?.

A snapshot set is quite easy to use. Load the complete code and play with this
simple walk through. The code can be located in the Elephant source tree under
src/conrib/eslick/snapshot-set.lisp.

The first step is to create a snapshot-set object,

(setf my-set (make-instance ’snapshot-set))

and add it to the root so we don’t lose track of it.

(add-to-root ’my-set my-set)

Then we need some objects to play with.

(defclass my-test-class ()
((value :accessor test-value :initarg :value)
(reference :accessor test-reference :initarg :reference)))

(setf objl (make-instance ’my-test-class :value 1 :reference nil))
(setf obj2 (make-instance ’my-test-class :value 2 :reference objl))
(setf obj3 (make-instance ’my-test-class :value 3 :reference 0bj2))

(register-object obj3 my-set)
(snapshot my-set)

Now your set should have persistent versions of all three classes that are reachable from

obj3.

(map-set (lambda (x) (print (test-value x))) my-set)

=>
3
2
1

Of course such fully connected objects are not always common, so we’ll demonstrate
using hash tables to create root indexes into our objects and sidestep registration calls
entirely. We’ll create a fresh set to work with.

(setf

my-set (make-instance ’snapshot-set))

(add-to-root ’my-set my-set)

(setf
(setf

(setf
(setf

(setf
(setf

obj4 (make-instance ’my-test-class :value 4 :reference objl))
obj5 (make-instance ’my-test-class :value 5 :reference nil))

hash (make-hash-table))
(snapshot-root my-set) hash)

(gethash ’obj3 hash) obj3)
(gethash ’obj4 hash) obj4)

2 Example provided by Ian Eslick, April 2007

72 Elephant User Manual

(setf (gethash ’obj5 hash) objb)

(snapshot my-set)
To properly simulate restoring objects, we need to drop our old hash table as well as
clear the persistent object cache so the snapshot set transient object is reset.
(setf my-set nil)
(setf hash nil)
(elephant: :flush-instance-cache *store-controller*)
Now we’ll pretend we're startup up a new session.
(setf my-set (get-from-root ’my-set))
(setf hash (snapshot-root my-set))

The cache is automatically populated by the implicit restore call during snapshot-set
initialization, and our hash table should now have all the proper references. We’ll pull out
a few.

(setf o4 (gethash ’obj4 hash))
(setf 03 (gethash ’obj3 hash))
(setf 02 (test-reference 03))

(not (or (eq o4 obj4)
(eq 03 0bj3)
(eq 02 0bj2)))
=t
The new objects should not be eq the old ones as we have restored fresh copies from the
disk.
If you review the setup above, obj3 references obj2 which references obj1 and obj4 also
references objl. So if the objects were properly restored, these references should be eq.
(eq (test-reference 02) (test-reference 04))
=t
And finally we can demonstrate the restorative power of snapshot sets.
(remhash ’obj5 hash)

(gethash ’objb5 hash)
=> nil nil

(restore my-set)
(setf hash (snapshot-root my-set))

(gethash ’0bj5 hash)
=> #<MY-TEST-CLASS ..> t

(test-value *)
=> 5
This means that while our set object was not reset, the restore operation properly
restored the old reference structure of our root hash object. Unfortunately, in this imple-
mentation you have to reset your lisp pointers to get access to the restored objects.

Chapter 6: Design Patterns 73

A future version could traverse the existing object cache, dropping new references and
restoring old ones so that in-memory lisp pointers were still valid.

6.3.3 Snapshot Set Implementation

In this section we walk through the implementation of the snapshot set in detail as it
provides:

e Insight into constraints in serialization and lisp object identity

e How to leverage Elephant for some more sophisticated applications than persistent
indices and class slots.

e Helps you understand a useful utility (that we may add to an extensions release in the
future)

To generalize the behavior discussed above, we will define a new persistent class called a
snapshot set. The set itself is a wrapper around the btree, but provides all the automation
to store and recover sets of standard objects.

(defpclass snapshot-set ()

((index :accessor snapshot-set-index :initform (make-btree))
(next-id :accessor snapshot-set-next-id :initform 0)

(root :accessor snapshot-set-root :initform nil)
(cache :accessor snapshot-set-cache
:initform (make-hash-table :weak-keys t)
:transient t)
(touched :accessor snapshot-set-touched
:initform (make-array 20 :element-type ’fixnum
:initial-element O :fill-pointer t
:adjustable t)
:transient t))

(:documentation "Keeps track of a set of standard objects
allowing a single snapshot call to update the store
controller with the latest state of all objects registered with
this set"))

The set class keeps track of IDs, a set of cached objects in memory, the on-disk btree for
storing instances by uid and the current uid variable value. Notice the use of the transient
keyword argument for the cache.

There are two major operations supported by sets snapshot and restore. These save
objects to disk and restore objects to memory, along with proper recovery of multiple
references to the same object.

Additional operations are:
e Registration: Adding and removing objects from a set
e Root operations: Easy access to a single root hash table or object
e Mapping: Walk over all objects in a set
To enable snapshots, we have to register a set of root objects with the set. This function
ignores objects that are already cached, otherwise allocates a new ID and caches the object.

(defmethod register-object ((object standard-object) (set snapshot-set))

74 Elephant User Manual

"Register a standard object. Not recorded until
the snapshot function is called on db"
(aif (lookup-cached-id object set)
(values object it)
(let ((id (incf (snapshot-set-next-id set))))
(cache-snapshot-object id object set)
(values object id))))

(defun lookup-cached-id (obj set)
(gethash obj (snapshot-set-cache set)))

(defun cache-snapshot-object (id obj set)
(setf (gethash obj (snapshot-set-cache set)) id))

A parallel function registers hash tables. One very important invariant implied here is
that the cache always contains objects that are eq and mapped back to a serialized object in
the backing btree. There is no need, however, to immediately write objects to the store and
this gives us some transactional properties: snapshots are atomic, consistent and durable.
Isolation is not enforced by snapshots.

This means that the transient cache has to be valid immediately after the snapshot set
is loaded from the data store.

(defmethod initialize-instance :after ((set snapshot-set) &key lazy-load &allow-other-
(unless lazy-load (restore set)))

This also has consequences for unregistration. Removing a root object should also result
in the removal of all objects that are unreachable from other roots. However, since side
effects are not permanent until a snapshot operation, we merely have to garbage collect id’s
that were not touched during a snapshot operation. This makes unregistration simple.

(defmethod unregister-object (object (set snapshot-set))
"Drops the object from the cache and backing store"
(let ((id (gethash object (snapshot-set-cache set))))
(when (null id)
(error "Object "A not registered in "A" object set))
(drop-cached-object object set)))

But snapshots are a little bit more work.

(defmethod snapshot ((set snapshot-set))
"Saves all objects in the set (and any objects reachable from the
current set of objects) to the persistent store"
(with-transaction (:store-controller (get-con
(snapshot-set-index set)))
(loop for (obj . id) imn
(get-cache-entries (snapshot-set-cache set))
do

(save-snapshot-object id obj set))

(collect-untouched set)))

(defun save-snapshot-object (id obj set)

Chapter 6: Design Patterns 75

(unless (touched id set)
(setf (get-value id (snapshot-set-index set))
(cond ((standard-object-subclass-p obj)
(save-proxy-object obj set))
((hash-table-p obj)
(save-proxy-hash obj set))
(t (error "Cannot only snapshot standard-objects and hash-tables"))))
(touch id set))
id)

(defun collect-untouched (set)
(map-btree (lambda (k v)
(unless (touched k set)
(remove-kv k (snapshot-set-index set))))
(snapshot-set-index set))
(clear-touched set))

We go through all objects in the cache, storing objects as we go via save-snapshot-
object. This function is responsible for storing objects and hash tables and recursing on
any instances that are referenced. Any object that is saved is added to a touch list so they
are not stored again and we can mark stored instances for the collect-untouched call
which ensures that newly unreachable objects are deleted from the persistent store. Any
newly found objects are added to the in-memory cache which, being a weak array, should
eventually drop references to objects that are not referred to elsewhere.

1t should be noted that garbage objects not garbage collected from the weak-array based
cache may be stored to and restored from the persistent store. However this is merely a
storage overhead as they will eventually be dropped across sessions as there are no saved
references to them.

Now when we serialize a standard object, all the slot values are stored inline. This
means that by default, a slot that refers to a standard object would get an immediately
serialized version rather than a reference. This of course makes it impossible to restore
multiple references to a single object. The approach taken here is to instantiate a prozy
object which is a copy of the original class and stores references to normal values in its
slots. Any references to hashes or standard classes are replaced with a reference object that
records the unique id of the object so it can be properly restored.

(defun save-proxy-object (obj set)

(let ((svs (subsets 2 (slots-and-values obj))))

(if (some #’reified-class-p (mapcar #’second svs))

(let ((proxy (make-instance (type-of obj))))

(loop for (slotname value) in svs do

(setf (slot-value proxy slotname)
(if (reify-class-p value)

(reify-value value set)

value)))

proxy)
obj)))

76 Elephant User Manual

The function checks whether any slot value can be reified (represented by a unique id)
and if so, makes a new proxy instance and properly instantiates its slots, returning it to the
main store function which writes the proxy object to the btree.

On restore, we simply load all objects into memory.

(defmethod restore ((set snapshot-set))

"Restores a snapshot by setting the snapshot-set state to the last
snapshot. If this is used during runtime, the user needs to drop all
references to objects and retrieve again from the snapshot set. Also
used to initialize the set state when a set is created, for example
pulled from the root of a store-controller, unless :lazy-load is
specified"

(clear-cache set)

(map-btree (lambda (id object)

(load-snapshot-object id object set))
(snapshot-set-index set)))

(defun load-snapshot-object (id object set)
(let ((object (ifret object (get-value id (snapshot-set-index set)))))
(cond ((standard-object-subclass-p object)
(load-proxy-object id object set))
((hash-table-p object)
(load-proxy-hash id object set))
(t (error "Unrecognized type “A for id "A in set "A"
(type-of object) id set)))))

If an object has a reference object in a slot, then we simply restore that object as well.
load-snapshot-object accepts null for an object so it can be used recursively when a
reference object refers to an object (via the unique id) that is not yet cached. The load
functions return an object so that they can used directly to create values for writing slots
or hash entries.

(defun load-proxy-object (id obj set)
(ifret (lookup-cached-object id set)
(progn
(cache-snapshot-object id obj set)
(let ((svs (subsets 2 (slots-and-values obj))))
(loop for (slotname value) in svs do
(when (setrefp value)
(setf (slot-value obj slotname)
(load-snapshot-object (snapshot-set-reference-id value) nil set)))))
obj)))

6.3.4 Isolating multiple snapshot sets

A brief note on how to separate out the objects you want to store from those you don’t
may be useful. We want to snapshot groups of inter-referential objects without sucking in
the whole system in one snapshot. These object sets must be closed and fully connected. If
the program consists of a set of subgraphs, a root element of each graph should be stored
in a hash table that is then treated as the snapshot root.

Chapter 6: Design Patterns 77

e Manual registration: Objects without external references are easy, just register or
unregister them from the snapshot-set as needed and then map over them to get
them back.

e Implicit registration: Just store objects in a hash that is the root of a snapshot-set
and you are good to go.

e Graphs: Graphs are easy to store as they naturally consist of a closed set of objects.
If the graph nodes reference other system objects that you don’t want to store, you'll
need to implement something akin to the indirection provided here. Just store the root
of the graph in the snapshot set root and go from there.

e All instances of a type: Another easy way to create sets is to overload make-instance
to store all new objects in a weak hash table that is treated as the root of a snapshot-
set (NOTE: I have not verified that weak hashes are properly serialized and reproduced
- T suspect they are not so you might have to copy after a restore).

For more complex applications, you can isolate these closed sets of objects by using
snapshot-set root hash tables as an indirection mechanism. Instead of storing direct
references in an object slot or hash value, isolation is ensured by storing keys and indirecting
through a hash table to get the target object. This can be hidden from the programmer
in multiple ways. The easiest way is just to make sure that when you store references you
store a key and overload the slot accessor. A sketch of this follows:

(defparameter *islandl-hash* (make-hash-table))
(defparameter *island2-hash* (make-hash-table))
(defvar *unique-idx 0)

(defclass islandl-object ()
((pointer-to-islandl :accessor child :initform nil)
(pointer-to-island2 :accessor neighbor :initform nil)))

(defmethod neighbor :around ((obj islandl-object))
(let ((key (call-next-method)))
(when key (gethash key *island2-hashx))))

(defmethod (setf neighbor) :around (ref (obj islandl-object))
(cond ((subtypep (type-of ref) ’island2-object)
(let ((key (find-object ref *island2-hashx*)))
(if key
(progn
(call-next-method key obj)
obj)
(progn
(setf (gethash (incf *unique-id#*) *island2-hash*) ref)
(call-next-method *unique-id* obj)
obj))))
(t (call-next-method))))

(defun find-object (obj hash)
(map-hash (lambda (k v)

78 Elephant User Manual

(declare (ignore k))
(if (eq obj v)

(return-from find-object obj)))
hash))

The same template would apply to island2 references to islandl objects. You could
further simplify creating these hash table indirections with a little macro:

(defmacro def-snapshot-wrapper (accessor-name
(source-classname target-classname hashname uid))
(with-gensysms (obj key ref)
‘ (progn
(defmethod ,accessorname :around ((,obj ,source-classname))
(let ((,key (call-next-method)))
(when ,key (gethash ,key ,hashname))))
(defmethod (setf ,accessorname) :around
(,ref (,obj ,source-classname))
(cond ((subtypep (type-of ,ref) ,target-classname)
(let ((,key (find-object ,ref ,hashname)))
(if ,key
(progn
(call-next-method ,key ,obj)
,0bj)
(progn
(setf (gethash (incf ,uid) ,hashname) ,ref)
(call-next-method ,uid ,obj)
,0bj))))
(t (call-next-method)))))))

(defclass island2-object ()
((pointer-to-island2 :accessor child :initform nil)
(pointer-to-islandl :accessor neighbor :initform nil)))

(def-snapshot-wrapper neighbor
(island2 islandl *islandl-hash* *unique-id*))

Of course this doesn’t work for multi-threaded environments, or for separating more
complex collections of types. T am also sure that more elegant solutions are possible. In
most cases, we assume the user will have a natural collection of objects that can be closed
over by types or references so such efforts are unnecessary.

6.4 Elephant as Database

As we move beyond replacing standard objects with persistent objects and using Elephant
to save conventional lisp data, we can exploit Elephant’s advanced class indexing features
and the query system. With these facilities, Elephant can be used as a full-fledged object
oriented database system

NOTE: Will finish this section after the query engine is done as it will be more coher-
ent/complete

Chapter 6: Design Patterns 79

6.5 Multithreaded Web Applications

Web applications can exploit all of the patterns described in previous sections. Each server
thread can have transactional access to objects encapsulating user data, commercial trans-
actions, database data, etc. Users can formulate queries against objects and get html
rendering of the result views.

The most important characteristic of Elephant in these settings is that instances and
store-controller objects in versions 0.9 and greater are automatically thread-safe. The
only consideration in these cases is transaction design.

NOTE: What are common wrappers for Elephant that come up in web applications?
Presentation functions?

NOTE: Should this section be supplanted by a full application example which uses most
of the patterns above?

6.6 Real-World Application Examples

This section contains a collection of case studies or overviews of read-world applications
that have exploited Elephant.

6.6.1 Konsenti

Elephant is used by Konsenti(tm), a for-profit company of Robert L. Read, one of the
maintainers of Elephant. It can be visited at http://konsenti.com.

Konsenti uses the Data Collection Management (DCM) package, found in the
src/contrib/rread directory. DCM provides prevalence-style in-memory write-through
caching. The most enjoyable feature about Elephant for this project is that new Business
Layer objects can be created without having to deal with an Object-Relational Mapping,
enabling extremely rapid development.

All Business objects are persisted via a director in DCM (which sits on top of Ele-
phant.) Many of these business objects are in fact finite state machines decorated with
functions. The functions are represented by lambda s-expressions stored in slots on the
business objects. A complete Message Factory and double-entry accounting system are also
implemented as DCM objects. Binary objects, such as uploaded PDFs, can be attached to
objects as comments and are stored directly in Elephant. Konsenti is based on utf-8, and
unicode characters outside of the ISO-8859-1 character set are routinely stored in Elephant.
Konsenti uses Postgres as a backend for licensing reasons; but use of other data stores is
possible.

6.6.2 Conceptminer

Conceptminer is an FElephant-based web-mining framework developed by ITan Eslick
(http://www.media.mit.edu/ eslick) that performs large-scale text analysis over the
web to identify semantic relationships such as “PartOf”, “DesireOf” and “EffectOf”
between English phrases.

Elephant’s persistence capability is used to keep full records of all source material, ex-
tracted relationships and search queries so that it is always possible to trace the source of
a learned relation and to avoid repeated queries to web search engines. Conceptminer used
Elephant 0.6.0 and the development branch of Elephant 0.9 to perform months of analysis
consisting of millions of pages and a page/query database of over ten gigabytes.

http://konsenti.com
http://www.media.mit.edu/~eslick

80 Elephant User Manual

There are several interesting uses and extensions of Elephant in Conceptminer:

e Bulk storage of post-processed web data: Elephant was used to store hundreds of
thousands of processed web pages as strings, associate pages with queries and store
related metadata.

e Derived index: a custom string hash function over URLSs was used to populate a class
derived index, allowing fast identification of pages from their URL without requiring
expensive eql comparisons.

e Inverted document index: a (not terribly efficient) data structure that efficiently maps
words to documents allowing pages to indexed by the words contained in them. Allowed
for phrase and conjunction searches.

e User association data structure: a data structure based on oids that supports general
one-to-many mappings between classes. Had a custom migrate method to support
migration of associations. Supplanted by persistent sets as of 0.9.

The most interesting use of Elephant was extending its transactional architecture to cover
in-memory lisp operations. PCOMP (Process Components) is a framework for constructing
and managing simple, dataflow-style multi-threaded applications in Common Lisp. The
goal is to simplify the process sufficiently so that the ordinary user can hide from many of
the details associated with aborting transactions. To this end, the model provides for safe,
asynchronous communications among a set of components which may be scheduled together
in a single process or communicate across separate threads (and potentially processes).
Components are packaged into a system inside a Container object which schedules execution
and mediates communications.

Communications between components can be in a dataflow style or using messages. Each
component has a single port for receiving incoming data items. These items, if access is
shared among components, should have the proper synchronization protections on mutating
accesses. There is also an asynchronous communications method allowing you to send
messages to components with particular names.

The basic building block is a component. Components are defined using the defcompo-
nent form and contain several major elements, such as:

(defcomponent counter
(:vars (count 0) end (increment 1))
(:initialize (assert end))
(:body
(when (>= (incf count increment) end)
(terminate))))
The arguments to defcomponent behave as follows:
e :vars - Values that the body wants to retain between invocations
e :initialize - A reserved message handler called at the begining of time

e :body - A body expression that is executed whenever data has arrived
The body and messages are evaluated in a very specific environment. Within the body
certain variables and functions are bound:
e Variables:

e data - The current data item

Chapter 6: Design Patterns 81

e self - The component object

e "vars" - all variables named in :vars are bound using symbol-macrolet and
available as in a let statement. Any side effects to those vars are visible, but not
saved to th component state until the component commits (see below).

Functions:
e (terminate)
e (send data)
e (receive data)
o (get-ctrl-msg target type data)
e (pause)
e (abort)

Each component execution is bound in a transactional framework. No variables are writ-

ten, messages consumed or messages sent until the body or control handler has exited nor-
mally. Users can tap into this transactional framework by overriding start-transaction,
commit-transaction and abort-transaction methods for the component class. Transac-
tional variables are implemented via :after methods on these generic functions.

When signals are asserted by the body or a message handler, they are also wrapped in

restart handlers called:

retry: Try to execute the component again

retry n times: Using retry you can retry the body or message again. Usually this works
best at the REPL when you can test or repair the error and then keep the procesess
running

replace: Interactively or automatically enter an expression to replace the current data
item with one of your choosing

ignore: Drop the message or data input as if it never arrived

terminate: Terminate execution of the current component

82

Elephant User Manual

Chapter 7: Elephant Architecture 83

7

Elephant Architecture

Elephant’s early architecture was tightly coupled to the Berkeley DB API. Over time we've
moved towards a more modular architecture to support easy upgrading, repository migra-
tion, shared functionality between data stores and general hygene.

The architecture has been carefully modularized:

User API

Data Store Interface and Utilities

[User API 1 Readyfointegrate [T 3rd party
I Internal T TBD

To get a feeling for what is happening inside elephant, it is probably best to walk through

the various major protocols to see how these components participate in implementing them.

Initialization of a store controller
Creating a persistent object
Operations on persistent slots
Operations on persistent collections

Implementing with-transaction

7.1 Initializing a store controller

When the main elephant open-store function is called with a specification, it calls get-
controller which first checks to see if a controller already exists for that spec.

84 Elephant User Manual

If there is no controller, it calls build-controller to construct one. If the data store
code base is not present, load-data-store is called to ensure that any asdf dependencies
are satisfied. The associations for asdf dependencies are statically configured in *elephant-
data-storesx* for each data store type supported by elephant.

While being loaded, the data store is responsible for calling register-data-store-con-
init to register a data store initialization function for its spec type (i.e. :BDB or :CLSQL).
For example, from bdb-controller.lisp:

(eval-when (:compile-toplevel :load-toplevel)
(register-data-store-con-init :bdb ’bdb-test-and-construct))

This mapping between spec types and initialization functions is accessed by lookup-
data-store-con-init from within build-controller. The function returned by lookup-
data-store-con-init is passed the full specification and returns a store-controller
subclass instance for the specified data store.

The new controller is stored in the *dbconnection-spec* hash table, associating the
object with its specification. Finally Elephant calls open-controller to actually establish a
connection to or create the files of the data store.

Finally, if the default store controller *store-controller* is nil, it will be initialized
with the new store controller, otherwise the original value is left in *store-controller*
until that store controller is closed using close-store.

The data store implementor has access to various utilities to aid initialization.

e get-user-configuration-parameter - Access symbol tags in my-config.sexp to access
data store specific user configuration. You can also add special variables to variables.lisp
and add a tag-variable pair to *user-configurable-parameters* in variables.lisp to
automatically initialize it when the store controller is opened.

e get-con behavior when store is closed or lost

e database-version a store controller implements this in order to tell Elephant what
serializer to use. Currently, version 0.6.0 databases use serializerl and all later database
use serializer version 2. This is to ensure that a given version of the Elephant code can
open databases from prior versions in order to properly upgrade to the new code base.

e Symbol conversions. To aid in opening legacy databases, a symbol conversion facility is
provided in controller.lisp to be applied to any symbols extracted from the legacy data
store. (if, for instance, the type name of subclasses changed, such as sleepycat-btree
becoming bdb-btree)

At this point, all operations referencing the store controller should be able to proceed.

At the end of a session,

7.2 Persistent Object Creation

The only thing that a data store has to do to support new object creation, other than
implement the slot protocol, is implement the method next-oid to return the next unique
object id for the persistent object being created.

Existing objects are created during deserialization of object references. The serializer

subsystem is built-into the core of elephant and can be used by data stores. The serializer
is abstracted so that multiple serializers can be co-resident and the data store can choose

Chapter 7: Elephant Architecture 85

the appropriate one. The abstraction boundary between the serializer, the data store,
and the core Elephant system is not perfect, so be aware and refer to existing data store
implementations if in doubt.

A serializer takes as arguments the store-controller, lisp object and a buffer-stream
from the memory utility library and returns the buffer-stream with the binary serialized
object. The deserializer reverses this process. For all lisp objects except persistent classes,
this means reallocating the storage space for the object and recreating all its contents.
Deserializing a standard object results in a new standard object of the same class with the
same slot values.

Persistent classes are dealt with specially. When a persistent object is serialized, it’s
oid and class are stored in the buffer-stream. On deserialization it uses the oid to check
in the store-controller’s cache for an existing placeholder object. If the cache misses, then
it creates a new placeholder object using the class and oid as described in See Section 4.3
[Persistent Classes and Objects], page 37. The store controller contains a cache instance
that is automatically initialized by the core Elephant object protocol.

Currently the serializer is selected by the core Elephant code based on the store con-
troller’s database version. See the reference section for details on implementing the store-
controller database version method. It is a relatively small change to have the data store
choose its own serializer, however we will have to tighten up and document the contracts
between the Elephant core code, serializer and data store.

7.3 Persistent Slot Protocol

The core protocol that the data store needs to support is the slot access protocol. During
object initialization, these functions are called to initialize the slots of the object. The four
functions are:

e persistent-slot-reader

e persistent-slot-writer

e persistent-slot-boundp

e persistent-slot-makunbound

More details can be found in the data store api reference section. In short, these functions

specialize on the specific store-controller of the data store and take instances, values
and slotnames as appropriate.

Typically the oid will be extracted from the instance and be used to update a table or
record where the oid and slotname identifies the value. A slot is typically unbound when
no value exists (as opposed to nil).

7.4 Persistent Collection Protocols

The BTree protocol is the most extensive interface that data stores must implement. Data
store implementations are required to subclass the abstract classes btree, indexed-btree,
and index and implement their complete APIs. Each class type is constructed by Elephant
using a store-controller that builds them. These methods are build-btree, build-
indexed-btree and build-index.

86 Elephant User Manual

The get-value interface is similar to the persistent slot reader and writer, but instead
of using oid and slotname to set values, it uses the btree oid and a key value as a unique
identifier for a value.

The BTree protocol almost requires an actual BTree implementation to be at all efficient.
Keys and values need to be accessible via the cursor API, which means they need to be
walked linearly in the sort order of the keys (described in Section 4.6 [Persistent BTrees],
page 44).

An indexed BTree automatically maintains a hash table of the indices defined on it so
that users can access them by mapping or lookup-by-name. The data store also has access
to this interface.

A BTree index must also maintain a connection to its parent BTree so that an index
value can be used as a primary tree key to retrieve the primary BTree value as part of the
cursor-pnext and cursor-pprev family of methods.

The contract of remove-kv is that the storage in the data store is actually freed for
reuse.

Persistent set implemenation is optional. A default BTree based implementation is
provided by default

7.5 Implementing Transactions

Oune of the most important pieces of functionality remaining to discuss is implementing
transactions. In existing data stores, transactions are merely extensions of the underlying
start, commit and abort methods of the 3rd party library or server being used. The Ele-
phant user interfaces to these functions in two ways: a call to execute-transaction or
explicit calls to controller-start-transaction, controller-commit-transaction and
controller-abort-transaction.

7.5.1 Implementing Execute Transaction

The macros with-transaction and ensure-transaction wrap access to the data store’s
execute-transaction. This function has a rich contract. It accepts as arguments the store
controller, a closure that executes the transaction body and a set of keywords. Keywords
required to be supported by the method (or ignored without loss of semantics) are :parent
and :retries.

The semantics of with-transaction are that a new transaction will always be requested
of the data store. If a transaction exists, ensure-transaction will merely call the trans-
action closure. If not it will function as a call to with-transaction.

execute-transaction is that it must ensure that the transaction closure is executed
within a dynamic context that insures the ACID properties of any database operations
(pset,btree or persistent slot operations). If there is a non-local exit during this execution,
the transaction should be aborted. If it returns normally, the transaction is committed. The
integer in the :retries argument dictates how many times execute-transaction should
retry the transaction before failing.

Elephant provides some bookkeeping to the data store to help with nested transactions
by using the *current-transaction* dynamic variable. In the dynamic context of the
transaction closure, another call to execute-transaction may occur with the transaction

Chapter 7: Elephant Architecture 87

argument defaulting to the value of *current-transaction*. The data store has to decide
how to handle these cases. To support this, the first call to execute transaction can cre-
ate a dynamic binding for *current-transaction#* using the make-transaction-record
call. This creates a transaction object that records the store controller that started the
transaction and any data store-specific transaction data.

The current policy is that the body of a transaction is executed with the *store-
controller* variable bound to the store-controller object creating the transaction. This
is important for default arguments and generally helps more than it hurts, so is an imple-
mentation requirement placed on execute-transaction.

If two nested calls to with-transaction are made successively in a dynamic context,
the data store can create true nested transactions. The first transaction is passed to the
:parent argument of the second. The second can choose to just continue the current
transaction (the CLSQL data store policy) or to nest the transaction (the BDB data store

policy).

7.5.2 Interleaving Multiple Store Transactions

Finally, some provision is made for the case where two store controllers have concurrently
active transactions in the same thread. This feature was created to allow for migration,
where a read from one database happens in one transaction, and while active has to writes
to another data store with a valid transaction.

The trick is that with-transaction checks to see if the current transaction object is
the same as the store-controller object passed to the :store-controller argument. If
not, a fresh transaction is started.

Currently no provision is made for more than two levels of multi-store nesting as we do
not implement a full transaction stack (to avoid walking the stack on each call to handle
this rare case). If a third transaction is started by the store controller that started the
first transaction, it will have no access to the parent transaction which may be a significant
source of problems for the underlying database.

88

Elephant User Manual

Chapter 8: Data Store API Reference 89

8 Data Store API Reference

This reference includes functions that need to be overridden, classes inherited from or other
action taken to implement support for a new data store. Included are the exported ele-
phant functions that need methods defined on them as well as the data-store-only functions
exported in data-store-api.lisp. Some functions here are utilities from the main elephant
package that support store implementations, but are not required. Migration, class indices
and query interfaces are implemented on top of the store API and require no special support
by implementors.

Because the number of data store implementors is small, this is a minimal documentation
set intended to serve as an initial guide and a reference. However, it is anticipated that some
interaction will be needed with the developers to properly harden a datastore for release.

The sections each contain a short guide and a list of functions relevant to them.

8.1 Registration

Elephant looks at the first element of the specification list to determine which data store
module to use. The master table for this information is *elephant-data-stores* in ele-
phant/controller.lisp. This will need to be augmented for every data store with the specifi-
cation keyword tag to be used (such as :BDB or :CLSQL) and the required asdf dependencies.

In addition, the data store source should use an eval-when statement to call the following
function:

elephant-data-store:register-data-store-con-init name [Function]
controller-init-fn
Data stores must call this function during the loading/compilation process to register
their initialization function for the tag name in *elephant-data-stores®. The initial-
ization function returns a fresh instance of the data stores store-controller subclass

If the data store requires any special user-specified configuration, augment the key types
in config.sexp with what you need and use the following function to access.

elephant-data-store:get-user-configuration-parameter name [Function]
This function pulls a value from the key-value pairs stored in my-config.sexp so data
stores can have their own pairs for appropriate customization after loading.

8.2 Store Controllers

Subclass store-controller and implement store and close controller which are called by open-
store and close-store respectively.

elephant:store-controller [Class]
Class precedence list: store-controller, standard-object, t

Slots:
e spec — initargs: :spec

Data store initialization functions are expected to initialize :spec on the call to
make-instance

90

Elephant User Manual

root

This is an instance of the data store persistent btree. It should have an oid
that is fixed in the code and does not change between sessions. Usually it this is
something like 0, 1 or -1

schema-table

Schema, id to schema database table

schema-name-index

Schema name to schema database table

schema-cache

This is a cache of class schemas stored in the database indexed by classid
schema-classes

Maintains a list of all classes that have a cached schema value so we can shutdown
cleanly

schema-cache-lock

Protection for updates to the cache from multiple threads. Do not override.
instance-table

Contains btree of oid to class ids

instance-class-index

A reverse map of class id to oid

instance-cache

This is an instance cache and part of the metaclass protocol. Data stores should
not override the default behavior.

instance-cache-lock
Protection for updates to the cache from multiple threads. Do not override.
index-table

This is another root for class indexing that is also a data store specific persistent
btree instance with a unique oid that persists between sessions. No cache is
needed because we cache in the class slots.

serializer-version

Governs the default behavior regarding which serializer version the current ele-
phant core is using. Data stores can override by creating a method on initialize-
serializer.

serialize

Accessed by elephant::serialize to get the entry point to the default serializer or
to a data store specific serializer

serialize-fn

Accessed by elephant::serialize to get the entry point to the default serializer or
to a data store specific serializer

deserialize

Contains the entry point for the specific serializer to be called by
elephant::deserialize

Chapter 8: Data Store API Reference 91

e deserialize-fn

Contains the entry point for the specific serializer to be called by
elephant::deserialize

Superclass for the data store controller, the main interface to any book-keeping, ref-
erences to db handles, the instance cache, btree table creation, counters, locks, the
roots (for garbage collection,) et cetera. Behavior is shared between the superclass
and subclasses. See slot documentation for details.

elephant-data-store:open-controller sc &key recover [Generic Function]
recover-fatal thread &allow-other-keys

Opens the underlying environment and all the necessary database tables. Different
data stores may use different keys so all methods should &allow-other-keys. There
are three standard keywords: :recover, :recover-fatal and :thread. Recover means that
recovery should be checked for or performed on startup. Recover fatal means a full
rebuild from log files is requested. Thread merely indicates to the data store that it is
a threaded application and any steps that need to be taken (for example transaction
implementation) are taken. :thread is usually true.

elephant-data-store:close-controller sc [Generic Function]
Close the db handles and environment. Should be in a state where lisp could be shut
down without causing an inconsistent state in the db. Also, the object could be used
by open-controller to reopen the database

elephant-data-store:connection-is-indeed-open [Generic Function]
controller
Validate the controller and the db that it is connected to

For upgrading and opening legacy databases it is important that a store be able to
indicate which version of elephant was used to create it. This governs the chosen serializer,
mappings between elephant symbols used in an old vs. new version, etc. Because this is
called to initialize the serializer, it must directly implemented by the data store without
using the serializer.

elephant-data-store:database-version sc [Generic Function]
Data stores implement this to store the serializer version. The protocol requires that
data stores report their database version. On new database creation, the database
is written with the *elephant-code-version™ so that is returned by database-version.
If a legacy database does not have a version according to the method then it should
return nil

around elephant-data-store:database-version sc [Method]
Default version assumption for unmarked databases is 0.6.0. It is possible to check
for 0.5.0 databases, but it is not implemented now due to the low (none?) number of
users still on 0.5.0

There are some utilities for serializing simple data without a serializer using the memutil
package.

92 Elephant User Manual

elephant-data-store:serialize-database-version-key bs [Function]
Given a buffer-stream, encode a key indicating the version using the constant
+elephant-version+

elephant-data-store:serialize-database-version-value version [Function]
bs
Serializes a list containing three integers to the buffer stream bs

elephant-data-store:deserialize-database-version-value bs [Function]
Deserializes the 3 integer list from buffer stream bs

8.3 Slot Access

Persistence is implement with a metaclass and several required base classes.

elephant:persistent-metaclass [Class]
Class precedence list: persistent-metaclass, standard-class, class,
specializer, metaobject, standard-object, t
Slots:

e ‘class-schema — initargs: :schemas
The code master schema
Metaclass for persistent classes. Use this metaclass to define persistent classes. All

slots are persistent by default; use the :transient flag otherwise. Slots can also be
indexed for by-value retrieval.

elephant:persistent [Class]
Class precedence list: persistent, standard-object, t

Slots:
e o0id — initargs: :from-oid
All persistent objects have an oid
e spec — initargs: :db-spec
Persistent objects use a spec pointer to identify which store they are connected
to

Abstract superclass for all persistent classes (common to both user-defined classes
and Elephant-defined objects such as collections.)

elephant:persistent-object [Class]
Class precedence list: persistent-object, persistent, standard-object, t

Superclass for all user-defined persistent classes. This is automatically inherited if
you use the persistent-metaclass metaclass. This allows specialization of functions for
user objects that would not be appropriate for Elephant objects such as persistent
collections

Persistent objects can be queries for their home store controller so that functions such as

map-btree do not need a store-controller argument. (NOTE: Should this function be user
visible?)

Chapter 8: Data Store API Reference 93

elephant-data-store:get-con instance [Generic Function]
This is used to find and validate the connection spec maintained for in-memory per-
sistent objects. Should we re-open the controller from the spec if it’s not cached?
That might be dangerous so for now we error

All objects require a unique object identifier. During new object creation the data store
is asked to produce a unique id.

elephant-data-store:next-oid sc [Generic Function]
Provides a persistent source of unique id’s

These functions are called by the metaclass protocol to implement the appropriate oper-
ations on persistent class slots. Unless protected by a transaction, the side effects of these
functions should be atomic, persistent and visible to other threads on completion.

elephant-data-store:persistent-slot-writer sc [Generic Function]
new-value instance name
Data store specific slot writer function

elephant-data-store:persistent-slot-reader sc instance [Generic Function]
name &optional oids-only
Data store specific slot reader function

elephant-data-store:persistent-slot-boundp sc instance [Generic Function]
name
Data store specific slot bound test function

elephant-data-store:persistent-slot-makunbound sc [Generic Function]
instance name
Data store specific slot makunbound handler

8.4 Collections

To support collections, the data store must subclass the following classes.

elephant:persistent-collection [Class]
Class precedence list: persistent-collection, persistent, standard-object, t

Abstract superclass of all collection types.

elephant:btree [Class]
Class precedence list: btree, persistent-collection, persistent,
standard-object, t

A hash-table like interface to a BTree, which stores things in a semi-ordered fashion.

elephant:btree-index [Class]
Class precedence list: btree-index, btree, persistent-collection,
persistent-object, persistent, standard-object, t

Secondary index to an indexed-btree.

94 Elephant User Manual

elephant:indexed-btree [Class]
Class precedence list: indexed-btree, btree, persistent-collection,
persistent, standard-object, t

A BTree which supports secondary indices.

To create the data store-appropriate type of btree, the data store implements this method
(and possibly related methods) aginst their store-controller.

elephant-data-store:build-btree sc [Generic Function]
Construct a btree of the appropriate type corresponding to this store-controller.

Most of the user-visible operations over BTrees must be implemented. Class indexing
functions such as map-class and get-instances-by-value and related functions are all
implemented using map-btree and map-index.

e [Generic-Function elephant:get-value], page 60 (and (setf get-value))

e [Generic-Function elephant:existsp], page 60
e [Generic-Function elephant:remove-kv], page 60
Generic-Function elephant:get-index], page 61

[
[
[
e [Generic-Function elephant:remove-index], page 61
[Generic-Function elephant:map-btree], page 60
[

Generic-Function elephant:map-index], page 61

Mapping over the indices of a btree is important to derived facilities such as class indexing
and the query subsystem.

elephant:map-indices fn bt [Generic Function]
Calls a two input function with the name and btree-index object of all secondary
indices in the btree

8.5 Cursors

Data stores must subclass these cursor classes and implement all the methods described in
Section 8.5 [DSR Cursors|, page 94 except [Macro elephant:with-btree-cursor|, page 61.

elephant:cursor [Class]
Class precedence list: cursor, standard-object, t
Slots:
e initialized-p — initargs: :initialized-p
Predicate indicating whether the btree in question is initialized or not. Initialized
means that the cursor has a legitimate position, not that any initialization action
has been taken. The implementors of this abstract class should make sure that
happens under the sheets... Cursors are initialized when you invoke an operation

that sets them to something (such as cursor-first), and are uninitialized if you
move them in such a way that they no longer have a legimtimate value.

A cursor for traversing (primary) BTrees.

Chapter 8: Data Store API Reference 95

elephant:secondary-cursor [Class]
Class precedence list: secondary-cursor, cursor, standard-object, t

Cursor for traversing secondary indices.

8.6 Transactions

These functions must be implemented or stubbed by all data stores.

elephant-data-store:execute-transaction store-controller — [Generic Function]
txn-fn &rest rest &key &allow-other-keys
This is an interface to the backend’s transaction function. The body should be exe-
cuted in a dynamic environment that protects against non-local exist, provides acid
properties for db operations within the body and properly binds any relevant param-
eters.

elephant-data-store:controller-start-transaction [Generic Function]
store-controller &key &allow-other-keys
Start an elephant transaction

elephant-data-store:controller-commit-transaction [Generic Function]
store-controller transaction &key &allow-other-keys
Commit an elephant transaction

elephant-data-store:controller-abort-transaction [Generic Function]
store-controller transaction &key &allow-other-keys
Abort an elephant transaction

These are supporting functions and variables for implementing transactions.

elephant-data-store:*current-transactionx [Variable]
The transaction which is currently in effect.

elephant-data-store:make-transaction-record sc txn &optional [Function]
prior
Backends must use this to assign values to *current-transaction® binding

elephant-data-store:transaction-store txnrec [Function]
Get the store that owns the transaction from a transaction record

elephant-data-store:transaction-object txnrec [Function]
Get the backend-specific transaction object

;; Designer considerations: ;; - with-transaction passes *current-transaction™ or the user
parameter to execute-transaction ;; in the parent keyword argument. Backends allowing
nested transactions can treat the transaction ;; as a parent, otherwise they can reuse the
current transaction by ignoring it (inheriting the dynamic ;; value of *current-transaction™)
or rebinding the dynamic context (whatever makes coding easier). ;; - ensure-transaction
uses *current-transaction® to determine if there is a current transaction ;; in progress (not

96 Elephant User Manual

null). If so, it jumps to the body directly. Otherwise it executes the body in a ;; new
transaction by calling ... ;; - execute-transaction contract: ;; - Backends must dynamically
bind *current-transaction® to a meaningful identifier for the ;; transaction in progress and
execute the provided closure in that context ;; - All non-local exists result in an abort; only
regular return values result in a commit ;; - If a transaction is aborted due to a deadlock or
read conflict, execute-transaction should ;; automatically retry with an appropriate default
amount ;; - execute-transaction can take any number of backend-defined keywords, although
designers should ;; make sure there are no semantic conflicts if there is a name overlap with
existing backends ;; - A typical design approach is to make sure that the most primitive
interfaces to the backend ;; database look at *current-transaction* to determine whether
a transaction is active. Users code can also ;; access this parameter to check whether a
transaction is active.

8.7 Multithreading Considerations

This expands slightly on the multithreading discussion in Section 4.10 [Multi-threaded Ap-
plications|, page 48.

Elephant provides a set of generic locking functions in src/utils/locks.lisp to help
protect any shared structures. There are standard locking functions (ele-with-lock) and
then a special locking interface called ele-with-fast-lock which on some lisps provides
a faster locking option than the standard OS locks of the basic interface. (i.e. under
Allegro this uses without-interrupts because Allegro still runs in a single OS process on
all platforms, this is not true of SBCL).

See the sections on Transaction handling, particularly the dynamic behavior of
xcurrent-transaction*. Also read up on the store controller section in the User Guide
to better understand the role of *store-controller*. At this time there are no other
global variables to worry about.

8.8 Handling Serialization

Data stores must initialize [Class elephant:store-controller], page 89 with internal serializer
functions. Packages elephant-serializerl and elephant-serializer?2 contains serialize
and deserialize methods on buffer-streams as defined in elephant-memutil. The elephant
functions serialize and deserialize dispatch on the appropriate slot values of the store-
controller.

NOTE: This should perhaps become entirely the job of the data store to
decide how to serialize values and for a specific version, what
serializer to use. The elphant main package can define serializers
for use by different data stores.

elephant-data-store:serialize frob bs sc [Function]
Generic interface to serialization that dispatches based on the current Elephant ver-
sion

elephant-data-store:deserialize bs sc &optional oid-only [Function]

Generic interface to serialization that dispatches based on the current Elephant ver-
sion

Chapter 8: Data Store API Reference 97

These utility functions are useful if a data store does not have the ability to store variable
length binary data. They are based on the cl1-base64 library.

elephant-data-store:serialize-to-base64-string x sc [Function]
Encode object using the store controller’s serializer format, but encoded in a base64

elephant-data-store:deserialize-from-base64-string x sc [Function]
Decode a base64-string using the store controller’s deserialize method

98

Elephant User Manual

Chapter 9: Copyright and License 99

9 Copyright and License

9.1 Elephant Licensing

Elephant is a persistent metaprotocol and object-oriented database for
Common Lisp. Detailed information and distributions can be found at
http://www.common-lisp.net/project/elephant.

The program is released under the following license:

Elephant users are granted the rights to distribute and use this software
as governed by the terms of the Lisp Lesser GNU Public License
http://opensource.franz.com/preamble.html, also known as the LLGPL.

Copyrights include:

Original Version, Copyright (©) 2004 Ben Lee and Andrew Blumberg.
Version 0.5, Copyright (©) 2006 Robert L. Read.

Versions 0.6-0.9, Copyright (©) 2006-2007 Tan Eslick and Robert L. Read
Portions copyright respective contributors (see ‘CREDITS’).

Portions of the program (namely the C unicode string sorter) are derived from IBM’s
ICU: ICU Website whose copyright and license follows below.

ICU License - ICU 1.8.1 and later COPYRIGHT AND PERMISSION NOTICE

Copyright (c¢) 1995-2003 International Business Machines Corporation and oth-
ers All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, provided that
the above copyright notice(s) and this permission notice appear in all copies of
the Software and that both the above copyright notice(s) and this permission
notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD
PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM,
OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be
used in advertising or otherwise to promote the sale, use or other dealings in
this Software without prior written authorization of the copyright holder.

http://www.common-lisp.net/project/elephant
http://opensource.franz.com/preamble.html
http://oss.software.ibm.com/icu/

100 Elephant User Manual

All trademarks and registered trademarks mentioned herein are the property
of their respective owners.

9.2 Elephant Manual Copyright and Licensing

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License.

Copyrights include:

Original Version, Copyright (©) 2004 Ben Lee.
Versions 0.5-0.6, Copyright (©) 2006 Robert L. Read.
Current Version, Copyright (©) 2006-2007 Tan Eslick and Robert L. Read

9.3 3rd Party Libraries

Elephant depends on 3rd party lisp libraries. See their respective distributions for detailed
copyright and licensing information. The following is a brief summary.

e uffi: By Kevin Rosenberg, no significant restrictions
e cl-base64: By Kevin Rosenberg, no significant restrictions
e rt: By Richard Waters, MIT License

9.4 Data Store Licensing Considerations

The Berkeley DB data store is based on the Berkeley DB C library, now owned by Oracle,
but available as GPL’ed software. It is important to understand that applications using
Berkeley DB must also be GPL’ed unless you negotiate a commercial license from Oracle.
In most interpretations of the license, this includes a requirement to make code available
for the entirety of any publicly visible website that is based on Berkeley DB. See

http://www.oracle.com/technology/software/products/berkeley-db/
htdocs/bdboslicense.html.

The CL-SQL backend, depending on which SQL engine you use, may not carry this
restriction and you can easily migrate data between the two. Since the Berkeley DB store
is 4-5x faster than SQL, it may make sense to develop under BDB and transition to SQL
after you’ve tuned the performance of the application. Licenses for various SQL engines
can be found at:

e SQLite: Public Domain, see the SQLite license page
e Postgresql: BSD License, see the Postgresql license page
e MySQL: Dual licensing (similar to BDB), see the MySQL license page

http://www.oracle.com/technology/software/products/berkeley-db/htdocs/bdboslicense.html
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/bdboslicense.html
http://www.sqlite.org/copyright.html
http://www.postgresql.org/about/licence
http://www.mysql.com/company/legal/licensing/

Appendix A: Concept Index

Appendix A Concept Index

API................. 57, 58, 60, 61, 63, 64, 65, 89
API Reference............................... 57

Collectionso i, 93
Copyright and License 99
CULSOT .+« et 63
CUrsorSo oi it 61, 94

D

Data Store 89
design ... 83
Design Patterns 67

Index 63
Indices......... ... 63
Installation.................................. 23

101
L
License ... 99
M
Migration and Upgrading..................... 65
Multithreadingo oL 96
P
Persistent Object Indexing 58
Persistent Objects 58
Persistent Objects and Slot Access 92
Persistent Sets............ 59
R
Registration and Initialization 89
S
Serializer........ ... 96
Store Controller 57
Store Controllers 89
T
Transaction APT............ 64
Transactions il 95
Tutorial ... 3

U

User API Reference 57
User Guide 33

102 Elephant User Manual

Appendix B: Object Index 103

Appendix B Object Index

elephant:btree............................. 93 elephant:persistent-metaclass............. 92
elephant:btree-index....................... 93 elephant :persistent-object 99
elephant:cursor............................ 94 elephant : pset 59
elephant:indexed-btree 94 P PPBEL -

elephant:persistent........................ 92 elephant:secondary-cursor 95

elephant:persistent-collection............ 93 elephant:store-controller 89

104 Elephant User Manual

Appendix C: Function / Macro Index

Appendix C Function / Macro Index

before...............

E

elephant-data-store:
elephant-data-store:
elephant-data-store:

elephant-data-store:
transaction.....
elephant-data-store:
transaction.....
elephant-data-store:
transaction.....
elephant-data-store:
elephant-data-store:
elephant-data-store:
version-value...
elephant-data-store:
base64-string. ..
elephant-data-store:
elephant-data-store:

elephant-data-store

parameter
elephant-data-store:

elephant-data-store

elephant-data-store:
elephant-data-store:
elephant-data-store:

makunbound
elephant-data-store:

elephant-data-store:

con-init

elephant-data-store:
elephant-data-store:
version-key.....
elephant-data-store:
version-value...
elephant-data-store:

string

elephant-data-store:
elephant-data-store:

elephant:add-index.

........................ 91
controller-abort-
....................... 95
controller-commit-
....................... 95
controller-start-
....................... 95
database-version 91
deserialize........... 96
deserialize-database-
....................... 92
deserialize-from-
....................... 97
execute-transaction.. 95
get-con............... 93
:get-user-configuration-
....................... 89
make-transaction-record
....................... 95
imext-oid.............. 93
open-controller 91
persistent-slot-boundp
....................... 93
persistent-slot-
....................... 93
persistent-slot-reader
....................... 93
persistent-slot-writer
....................... 93
register-data-store-
....................... 89
serialize............. 96
serialize-database-
....................... 92
serialize-database-
....................... 92
serialize-to-base64-
....................... 97
transaction-object ... 95
transaction-store 95
........................ 61

elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:
elephant:

105
add-to-root....................... 57
close-store....................... 57
controller-abort-transaction.... 64
controller-commit-transaction ... 64
controller-start-transaction.... 64
cursor-close 61
cursor-current 62
cursor-delete 62
cursor-duplicate 62
cursor-first 62
cursor-get-both 62
cursor-get-both-range............ 62
cursor-last....................... 62
cursor-next....................... 62
cursor-next-dup 64
cursor-next-nodup 63
cursor-pcurrent 63
cursor-pfirst 63
cursor-pget-both 63
cursor-pget-both-range........... 63
cursor-plast 63
cursor-pnext 63
cursor-pnext-dup 64
cursor-pnext-nodup............... 64
CULSOT=PPTeVvvvernnnnnnnn.. 63
cursor-pprev-dup 64
cursor-pprev-nodup............... 64

CULSOT=PreV.......ovnvvuneunnounnnn. 62

cursor-prev-dup 64
cursor-prev-nodup 64
cursor-pset....................... 63
cursor-pset-range 63
CUrsOr—put........................ 62
cursor-set........................ 62
cursor-set-range 62
defpclass......................... 58
drop-btree.............. 60
drop-instance 58
drop-instances 59
drop-pset.............. 59
existsp.........l 60
find-item......................... 59
get-from-root 57
get-index.............. 61
get-instance-by-value............ 59
get-instances-by-class........... 58
get-instances-by-range........... 59
get-instances-by-value........... 59
get-primary-key 61
get-value......................... 60
insert-item....................... 59
make-btree........................ 60
Make—CUTSOToovuunnrnnn.. 61
make-indexed-btree............... 60

106

elephant:map-btree......................... 60
elephant:map-class......................... 58
elephant:map-index......................... 61
elephant:map-indices....................... 94
elephant:map-inverted-index............... 58
elephant:map-pset.......................... 59
elephant:map-root.......................... 57
elephant:migrate 65, 66
elephant:open-store........................ 57
elephant:pset-list...................... ... 59

Elephant User Manual

elephant:remove-from-root 57
elephant:remove-index 61
elephant:remove-item....................... 59
elephant:remove-Kv......................... 60
elephant:root-existsp 57
elephant:upgrade 65
elephant:with-btree-cursor................ 61
elephant:with-open-store 57

elephant:

with-transaction................. 64

Appendix D: Variable Index 107

Appendix D Variable Index

elephant-data-store:*current-transaction* elephant:*store-controller*............... 57

108 Elephant User Manual

Colophon 109

Colophon

This manual is maintained in Texinfo, and automatically translated into other forms (e.g.
HTML or pdf). If you're reading this manual in one of these non-Texinfo translated forms,
that’s fine, but if you want to modify this manual, you are strongly advised to seek out
a Texinfo version and modify that instead of modifying a translated version. Even better
might be to seek out the Texinfo version (maintained at the time of this writing as part of
the Elephant project at http://www.common-1lisp.net/project/elephant/) and submit
a patch.

http://www.common-lisp.net/project/elephant/

110 Elephant User Manual

	Introduction
	History
	Elephant Goals
	More Information

	Tutorial
	Overview
	Getting Started
	The Store Root
	Serialization
	Persistent Classes
	Rules about Persistent Classes
	Persistent collections
	Using PSets
	Using BTrees

	Indexing Persistent Classes
	Using Transactions
	Why do we need Transactions?
	Using with-transaction
	Nesting Transactions
	Idempotent Side Effects
	Transactions and Performance
	Transactions and Applications

	Advanced Topics

	Installation
	Requirements
	Supported Lisp, Platform and Data store combinations
	Library dependencies

	Configuring Elephant
	Loading Elephant
	Loading Elephant via ASDF
	Two-Phase Load Process
	Packages
	Opening a Store

	Berkeley DB
	Setting up Berkeley DB
	Upgrading Berkeley DB Databases
	Upgrading to 0.9
	Upgrade from Elephant 0.5

	CL-SQL
	CL-SQL Example
	Elephant on Windows
	Test Suites
	Documentation

	User Guide
	The Store Controller
	Serialization details
	Restrictions of Store-by-Value
	Atomic Types
	Aggregate Types

	Persistent Classes and Objects
	Persistent Class Definition
	Instance Creation
	Persistent Instance Lifecycle
	Using Transient Slots
	Using Persistent Slots
	Class Redefinition
	Support for change-class

	Class Indices
	Synchronizing Classes and Data Stores

	Persistent Sets
	Persistent BTrees
	BTree Cursors
	BTree Indexing
	Index Cursors
	Multi-threaded Applications
	Shared Resources
	Data Store Thread Safety and Transactions
	Minimize Dependency on Thread-Local Specials

	Transaction Details
	with-transaction internals
	execute-transaction internals
	Building your own transactional framework
	Analyzing Dynamic Transaction Behavior

	Multi-repository Operation
	Multiple Processes and Distributed Applications
	Repository Migration and Upgrade
	Performance Tuning
	Garbage Collection
	Berkeley DB Data Store
	Architecture Overview
	Opening a Store
	Starting a Transaction
	Special Commands
	Performance Tuning

	CLSQL Data Store
	Basic CLSQL Implementation

	Postmodern Data Store
	Native Lisp Data Store

	User API Reference
	Store Controllers
	Persistent Objects
	Persistent Object Indexing
	Indexed Object Accessors

	Persistent Sets
	BTrees
	Btree Cursors
	Index Cursors
	Transactions
	Migration and Upgrading

	Design Patterns
	Persistent System Objects
	File System Replacement
	Checkpointing Conventional Program State
	Assumptions
	Snapshot Set
	Snapshot Set Implementation
	Isolating multiple snapshot sets

	Elephant as Database
	Multithreaded Web Applications
	Real-World Application Examples
	Konsenti
	Conceptminer

	Elephant Architecture
	Initializing a store controller
	Persistent Object Creation
	Persistent Slot Protocol
	Persistent Collection Protocols
	Implementing Transactions
	Implementing Execute Transaction
	Interleaving Multiple Store Transactions

	Data Store API Reference
	Registration
	Store Controllers
	Slot Access
	Collections
	Cursors
	Transactions
	Multithreading Considerations
	Handling Serialization

	Copyright and License
	Elephant Licensing
	Elephant Manual Copyright and Licensing
	3rd Party Libraries
	Data Store Licensing Considerations

	Concept Index
	Object Index
	Function / Macro Index
	Variable Index
	Colophon

